Algorithm Analysis
Purpose

- Why bother analyzing code; isn’t getting it to work enough?
 - Estimate time and memory in the average case and worst case
 - Identify bottlenecks, i.e., where to reduce time
 - Compare different approaches
 - Speed up critical algorithms
When designing algorithms, we may end up breaking the problem into smaller “sub-problems”.

Many algorithms can exist to solve one problem.

When designing algorithms, we may end up breaking the problem into smaller “sub-problems”.

Many algorithms can exist to solve one problem.

Problem – Algorithm – Data Structures & Techniques

Problem (e.g., searching) solves Algorithm (e.g., binary search)

specification (Input => Output)

contains

uses

Data structures & Techniques
(e.g., sorting is a technique array is a data struct.)
Algorithm

- Algorithm
 - Well-defined computational procedure for transforming inputs to outputs

- Problem
 - Specifies the desired input-output relationship

- Correct algorithm
 - Produces the correct output for every possible input in finite time
 - Solves the problem
Algorithm Analysis

- Predict resource utilization of an algorithm
 - Running time
 - Memory

- Dependent on architecture & model
 - Serial
 - Parallel
 - Quantum
 - DNA
 - ...

Copyright © 1997 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited
Factors for Algorithmic Design Consideration

- Run-time
- Space/memory
- Suitability to the problem’s application domain (contextual relevance)
- Scalability
- Guaranteeing correctness
- Deterministic vs. randomized
- Computational model
- System considerations: cache, disk, network speeds, etc.
Model that we will assume

- Simple serial computing model
Other Models

- Multi-core models
- Co-processor model
- Multi-processor model
 - Shared memory machine
 - Multiple processors sharing common RAM
 - Memory is cheap ($20 per GB)
 - Memory bandwidth is NOT

Cray XMT Supercomputer
- Up to 64 TB (65,536 GB) shared memory
- Up to 8000 processors
- 128 independent threads per processor
- $150M
Supercomputer speed is measured in number of floating point operations per sec (or FLOPS).

Other Models

- Distributed memory model
- www.top500.org

Fastest supercomputer (as of June 2012):
 - Sequoia @ Lawrence Livermore National Lab:
 - 16.32 PetaFlop/s
 - (16.32 x 10^{15} floating point ops per sec)
 - IBM BlueGene/Q architecture
 - #processing cores: 1.5M cores
 - #aggregate memory: 1,572 TB
 - Price tag: millions of $$$
What to Analyze: $T(n)$

- Running time $T(n)$
 - N or n is typically used to denote the size of the input
 - Sorting?
 - Multiplying two integers?
 - Multiplying two matrices?
 - Traversing a graph?

- $T(n)$ measures number of primitive operations performed
 - E.g., addition, multiplication, comparison, assignment
How to Analyze $T(n)$?

- As the input (n) grows what happens to the time $T(n)$?

![Graph showing running time vs input size with different growth rates: Linear, $O(N \log N)$, Quadratic, Cubic.](image)
Example for calculating $T(n)$

```c
int sum (int n)
{
    int partialSum;
    partialSum = 0;
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```

$T(n) = 6n+4$
Example: Another less-precise but equally informative analysis

```c
int sum (int n)
{
    int partialSum;
    partialSum = 0;
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```

<table>
<thead>
<tr>
<th>#operations</th>
<th>T(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\propto n$</td>
</tr>
<tr>
<td>0</td>
<td>$\propto n$</td>
</tr>
<tr>
<td>1</td>
<td>$\propto n^2$</td>
</tr>
<tr>
<td>n</td>
<td>$\propto n$</td>
</tr>
<tr>
<td>n^2</td>
<td>$\propto n^2$</td>
</tr>
<tr>
<td>1</td>
<td>$\propto n$</td>
</tr>
</tbody>
</table>

$T(n) \propto n$
Do constants matter?

- What happens if:
 - N is small (< 100)?
 - N is medium (<1,000,000)?
 - N is large (> 1,000,000)?

- Asymptotically, curves matter more than absolute values!
 - Let:
 - $T_1(N) = 3N^2 + 100N + 1$
 - $T_2(N) = 50N^2 + N + 500$
 - Compare $T_1(N)$ vs $T_2(N)$?

Both codes will show a quadratic behavior
Algorithmic Notation & Analysis

- Big-O $O()$
- Omega $\Omega()$
- small-O $o()$
- small-omega $\omega()$
- Theta $\Theta()$

- Worst-case
- Average-case
- Best-case

Describes the input

- “Algorithms”
- Lower-bound
- Upper-bound
- Tight-bound
- “Optimality”

Describes the problem & its solution

Asymptotic notations that help us quantify & compare costs of different solutions
Asymptotic Notation

- **Theta**
 - Tight bound
- **Big-Oh**
 - Upper bound
- **Omega**
 - Lower bound

The main idea:
Express cost relative to standard functions (e.g., lg n, n, n^2, etc.)
Some Standard Function Curves

<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Constant</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\log^2 N$</td>
<td>Log-squared</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>$N \log N$</td>
<td></td>
</tr>
<tr>
<td>N^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>N^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>2^N</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

(curves not to scale)

Initial aberrations do NOT matter!
Big-oh : \(O() \)

- \(f(N) = O(g(N)) \) if there exist positive constants \(c \) and \(n_0 \) such that:
 - \(f(N) \leq c \times g(N) \), for all \(N > n_0 \)

- Asymptotic upper bound, possibly tight
Example for big-Oh

- E.g., let \(f(n) = 10n \)
 - \(\Rightarrow f(n) = O(n^2) \)

Proof:
- If \(f(n) = O(g(n)) \)
 - \(\Rightarrow f(n) \leq c \cdot g(n) \), for all \(n > n_0 \)
 - (show such a \(\langle c, n_0 \rangle \) combination exists)
 - \(\Rightarrow c = 1, n_0 = 9 \)
- (Remember: always try to find the lowest possible \(n_0 \))

Breakeven point \((n_0) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(10n)</th>
<th>(c \cdot n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>81</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>121</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\(c = 1 \)
Ponder this

If \(f(n) = 10n \), then:
- Is \(f(n) = O(n) \)?
- Is \(f(n) = O(n^2) \)?
- Is \(f(n) = O(n^3) \)?
- Is \(f(n) = O(n^4) \)?
- Is \(f(n) = O(2^n) \)?
- ...

Yes: e.g., for \(<c=10, n_0=1> \)
Yes: e.g., for \(<c=1, n_0=9> \)

If all of the above, then what is the best answer?
- \(f(n) = O(n) \)
Little-o : o()

- $f(N) = o(g(N))$ if there exist positive constants c and n_0 such that:
 - $f(N) < c \times g(N)$ when $N > n_0$

- E.g., $f(n) = 10n$; $g(n) = n^2$
 - $\Rightarrow f(n) = o(g(n))$
Big-omega: \(\Omega() \)

- \(f(N) = \Omega(g(N)) \) if there exist positive constants \(c \) and \(n_0 \) such that:
 - \(f(N) \geq c \times g(N) \), for all \(N > n_0 \)

Lower bound for \(f(N) \), possibly tight

- E.g., \(f(n) = 2n^2; \ g(n) = n \log n \)
 \[\implies f(n) = \Omega(g(n)) \]
Little-omega : $\omega()$

- $f(N) = \omega(g(N))$ if there exist positive constants c and n_0 such that:
 - $f(N) > c \cdot g(N)$ when $N > n_0$

- E.g., $f(n) = 100 \cdot n^2$; $g(n) = n$
 $\implies f(n) = \omega(g(n))$
$$\Theta()$$

- \(f(N) = \Theta(h(N)) \) if there exist positive constants \(c_1, c_2 \) and \(n_0 \) such that:
 - \(c_1 h(N) \leq f(N) \leq c_2 h(N) \) for all \(N > n_0 \)

(same as)

- \(f(N) = \Theta(h(N)) \) if and only if \(f(N) = O(h(N)) \) and \(f(N) = \Omega(h(N)) \)

Tight bound for \(f(N) \)
Example (for theta)

- $f(n) = n^2 - 2n \Rightarrow f(n) = \Theta(?)$
- **Guess:** $f(n) = \Theta(n^2)$
- **Verification:**
 - Can we find valid c_1, c_2, and n_0?
- If true:
 - $c_1 n^2 \leq f(n) \leq c_2 n^2$
 - $c_1 n^2 \leq n^2 - 2n \leq c_2 n^2$
 - ...
The Asymptotic Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Purpose</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>Upper bound, possibly tight</td>
<td>$f(n) \leq c \cdot g(n)$</td>
</tr>
<tr>
<td>$\Omega(n)$</td>
<td>Lower bound, possibly tight</td>
<td>$f(n) \geq c \cdot g(n)$</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Tight bound</td>
<td>$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$</td>
</tr>
<tr>
<td>$o(n)$</td>
<td>Upper bound, strict</td>
<td>$f(n) < c \cdot g(n)$</td>
</tr>
<tr>
<td>$\omega(n)$</td>
<td>Lower bound, strict</td>
<td>$f(n) > c \cdot g(n)$</td>
</tr>
</tbody>
</table>
BLAH, BLAH, BLAH, BLAH... I HAVE NO IDEA WHAT HE'S TALKING ABOUT.

DILBERT
By Scott Adams
Asymptotic Growths

Asymptotic Notations:

- \(f(n) = O(g(n)) \)
- \(f(n) = \Omega(g(n)) \)
- \(f(n) = o(g(n)) \)
- \(f(n) = \omega(g(n)) \)
- \(f(n) = \Theta(g(n)) \)
Rules of Thumb while using Asymptotic Notations

Algorithm’s complexity:

- When asked to analyze an algorithm’s complexities:
 - 1st Preference: Whenever possible, use \(\Theta() \)
 - 2nd Preference: If not, use \(O() \) - or \(o() \)
 - 3rd Preference: If not, use \(\Omega() \) - or \(\omega() \)
Rules of Thumb while using Asymptotic Notations...

Algorithm’s complexity:

- Unless otherwise stated, express an algorithm’s complexity in terms of its worst-case
Rules of Thumb while using Asymptotic Notations...

Problem’s complexity

- Ways to answer a problem’s complexity:

 Q1) This problem is at least as hard as ... ?
 Use lower bound here

 Q2) This problem cannot be harder than ... ?
 Use upper bound here

 Q3) This problem is as hard as ... ?
 Use tight bound here
A few examples

- \(N^2 = O(1) = O(N) = O(N^2) \)
- \(N^2 = \Omega(1) = \Omega(N) = \Omega(N^2) \)
- \(N^2 = \Theta(N^2) \)
- \(N^2 = o(N^3) \)
- \(2N^2 + 1 = \Theta(?) \)
- \(N^2 + N = \Theta(?) \)
- \(N^3 - N^2 = \Theta(?) \)
- \(3N^3 - N^3 = \Theta(?) \)
Reflexivity

- Is \(f(n) = \Theta(f(n)) \)?
 - yes
- Is \(f(n) = O(f(n)) \)?
 - yes
- Is \(f(n) = \Omega(f(n)) \)?
 - yes
- Is \(f(n) = o(f(n)) \)?
 - no
- Is \(f(n) = \omega(f(n)) \)?
 - no
Symmetry

- \(f(n) = \Theta(g(n)) \) “iff” \(g(n) = \Theta(f(n)) \)

“If and only if”
Transpose symmetry

- \(f(n) = O(g(n)) \) iff \(g(n) = \Omega(f(n)) \)

- \(f(n) = o(g(n)) \) iff \(g(n) = \omega(f(n)) \)
Transitivity

- \(f(n) = \Theta(g(n)) \) and \(g(n) = \Theta(h(n)) \) \(\Rightarrow \) \(f(n) = \Theta(h(n)) \)

- \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) \(\Rightarrow \) ?

- \(f(n) = \Omega(g(n)) \) and \(g(n) = \Omega(h(n)) \) \(\Rightarrow \) ?

- ...
More rules...

- **Rule 1:** If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$, then
 - additive: $T_1(n) + T_2(n) = O(f(n) + g(n))$
 - multiplicative: $T_1(n) \times T_2(n) = O(f(n) \times g(n))$

- **Rule 2:** If $T(n)$ is a polynomial of degree k, then $T(n) = \Theta(n^k)$

- **Rule 3:** $\log^k n = O(n)$ for any constant k

- **Rule 4:** $\log_a n = \Theta(\log_b n)$ for any constants a & b
Some More Proofs

- **Prove that:** \(n \log n = O(n^2) \)
 - We know \(\log n \leq n \), for \(n \geq 1 \) (\(\Rightarrow n_0 = 1 \))
 - Multiplying \(n \) on both sides:
 - \(n \log n \leq n^2 \)
 - \(\Rightarrow n \log n \leq 1 \cdot n^2 \)
Some More Proofs...

Prove that: \(6n^3 \neq O(n^2) \)

By contradiction:

- If \(6n^3 = O(n^2) \)
 - \(6n^3 \leq c n^2 \)
 - \(6n \leq c \)
 - It is not possible to bound a variable with a constant
 - Contradiction ❌
Maximum subsequence sum problem

- Given N integers A_1, A_2, \ldots, A_N, find the maximum value (≥ 0) of:

$$\sum_{k=i}^{j} A_k$$

- Don’t need the actual sequence (i,j), just the sum
- If final sum is negative, output 0

- E.g., $[1, -4, 4, 2, -3, 5, 8, -2]$
 16 is the answer
MaxSubSum: Solution 1

- Compute for all possible subsequence ranges \((i,j)\) and pick the maximum range

\[
\text{MaxSubSum1} \ (A) \\
\text{maxSum} = 0 \\
\text{for } i = 1 \text{ to } N \\
\quad \text{for } j = i \text{ to } N \\
\quad \quad \text{sum} = 0 \\
\quad \quad \text{for } k = i \text{ to } j \\
\quad \quad \quad \text{sum} = \text{sum} + A[k] \\
\quad \quad \text{if } (\text{sum} > \text{maxSum}) \\
\quad \quad \quad \text{then maxSum} = \text{sum} \\
\quad \text{return maxSum}
\]

- All possible start points
- All possible end points
- Calculate sum for range \([i..j]\)

Total run-time = \(\Theta(N^3)\)
/**
 * Cubic maximum contiguous subsequence sum algorithm.
 */

int maxSubSum1(const vector<int> & a)
{
 int maxSum = 0;

 for(int i = 0; i < a.size(); i++)
 for(int j = i; j < a.size(); j++)
 {
 int thisSum = 0;

 for(int k = i; k <= j; k++)
 thisSum += a[k];

 if(thisSum > maxSum)
 maxSum = thisSum;
 }

 return maxSum;
}
Solution 1: Analysis

- More precisely

\[T(N) = \sum_{i=0}^{N-1} \sum_{j=i}^{N-1} \sum_{k=i}^{j} \Theta(1) \]

\[= \Theta(N^3) \]
MaxSubSum: Solution 2

Observation: \[\sum_{k=i}^{j} A_k = A_j + \sum_{k=i}^{j-1} A_k \]

\[\Rightarrow \] So, re-use sum from previous range

Old code:

```
MaxSubSum1 (A)
maxSum = 0
for i = 1 to N
    for j = i to N
        sum = 0
        for k = i to j
            sum = sum + A[k]
        if (sum > maxSum)
            then maxSum = sum
return maxSum
```

New code:

```
MaxSubSum2 (A)
maxSum = 0
for i = 1 to N
    sum = 0
    for j = i to N
        sum = sum + A[j]
        if (sum > maxSum)
            then maxSum = sum
return maxSum
```

Sum (new k) = sum (old k) + A[k]

\[\Rightarrow \] So NO need to recompute sum for range A[i..k-1]

Cpt S 223. School of EECS, WSU
/**
 * Quadratic maximum contiguous subsequence sum algorithm.
 */

int maxSubSum2(const vector<int> & a)
{
 int maxSum = 0;

 for(int i = 0; i < a.size(); i++)
 {
 int thisSum = 0;
 for(int j = i; j < a.size(); j++)
 {
 thisSum += a[j];

 if(thisSum > maxSum)
 maxSum = thisSum;
 }
 }

 return maxSum;
}
Solution 2: Analysis

\[
T(N) = \sum_{i=0}^{N-1} \sum_{j=i}^{N-1} \Theta(1)
\]

\[
T(N) = \Theta(N^2)
\]

Can we do better than this?

Use a Divide & Conquer technique?
MaxSubSum: Solution 3

- Recursive, "divide and conquer"
 - Divide array in half
 - $A_{1..center}$ and $A_{(center+1)..N}$
 - Recursively compute MaxSubSum of left half
 - Recursively compute MaxSubSum of right half
 - Compute MaxSubSum of sequence constrained to use A_{center} and $A_{(center+1)}$
 - Return $\max\{\text{left_max}, \text{right_max}, \text{center_max}\}$

- E.g., $<1, -4, 4, 2, -3, 5, 8, -2>$

Cpt S 223. School of EECS, WSU
MaxSubSum: Solution 3

\[
\text{MaxSubSum3} (A, i, j) \\
\text{maxSum} = 0 \\
\text{if} \ (i = j) \\
\text{then if} \ A[i] > 0 \\
\text{then maxSum} = A[i] \\
\text{else} \ k = \text{floor}((i+j)/2) \\
\text{maxSumLeft} = \text{MaxSubSum3}(A, i, k) \\
\text{maxSumRight} = \text{MaxSubSum3}(A, k+1, j) \\
\text{compute maxSumThruCenter} \\
\text{maxSum} = \text{Maximum} (\text{maxSumLeft}, \text{maxSumRight}, \text{maxSumThruCenter}) \\
\text{return maxSum}
\]
/**
 * Recursive maximum contiguous subsequence sum algorithm.
 * Finds maximum sum in subarray spanning a[left..right].
 * Does not attempt to maintain actual best sequence.
 */

int maxSumRec(const vector<int> & a, int left, int right)
{
 if(left == right) // Base case
 if(a[left] > 0)
 return a[left];
 else
 return 0;

 int center = (left + right) / 2;
 int maxLeftSum = maxSumRec(a, left, center);
 int maxRightSum = maxSumRec(a, center + 1, right);
// how to find the max that passes through the center

int maxLeftBorderSum = 0, leftBorderSum = 0;
for(int i = center; i >= left; i--)
{
 leftBorderSum += a[i];
 if(leftBorderSum > maxLeftBorderSum)
 maxLeftBorderSum = leftBorderSum;
}

int maxRightBorderSum = 0, rightBorderSum = 0;
for(int j = center + 1; j <= right; j++)
{
 rightBorderSum += a[j];
 if(rightBorderSum > maxRightBorderSum)
 maxRightBorderSum = rightBorderSum;
}

return max3(maxLeftSum, maxRightSum,
 maxLeftBorderSum + maxRightBorderSum);
38 /**
39 * Driver for divide-and-conquer maximum contiguous
40 * subsequence sum algorithm.
41 */
42 int maxSubSum3(const vector<int> & a)
43 {
44 return maxSumRec(a, 0, a.size()-1);
45 }
Solution 3: Analysis

- $T(1) = \Theta(1)$
- $T(N) = 2T(N/2) + \Theta(N)$
- $T(N) = \Theta(?)$

Can we do even better?

$T(N) = \Theta(N \log N)$
MaxSubSum: Solution 4

- **Observation**
 - Any negative subsequence cannot be a prefix to the maximum sequence
 - Or, only a positive, contiguous subsequence is worth adding

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-4</th>
<th>4</th>
<th>2</th>
<th>-3</th>
<th>5</th>
<th>8</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

E.g., \(<1, -4, 4, 2, -3, 5, 8, -2>\)

MaxSubSum4 (A)
- maxSum = 0
- sum = 0
- for j = 1 to N
 - sum = sum + A[j]
 - if (sum > maxSum)
 - then maxSum = sum
 - else if (sum < 0)
 - then sum = 0
- return maxSum

\(T(N) = \Theta(N)\)

Can we do even better?
MaxSubSum: Solution 5 (another $\Theta(N)$ algorithm)

- Let’s define: $\text{Max}(i) \leq \text{maxsubsum}$ for range $A[1..i]$
 - $\implies \text{Max}(N)$ is the final answer
- Let; $\text{Max}’(i) \leq \text{maxsubsum}$ ending at $A[i]$
- Base case:
 - $\text{Max}(1) = = \text{Max}’(1) = \max \{ 0, A[1] \}$
- Recurrence (i.e., FOR $i=2$ to N):
 - $\text{Max}(i) = ?$
 - $= \max \{ \text{Max}’(i), \text{Max}(i-1) \}$
 - $\text{Max}’(i) = ?$
 - $= \max \{ \text{Max}’(i-1) + A[i], A[i], 0 \}$

This technique is called “dynamic programming”
Algorithm 5 pseudocode

Dynamic programming: (re)use the optimal solution for a sub-problem to solve a larger problem

```
MaxSubSum5 (A)

if N==0 return 0

max = MAX(0, A[1])
max’ = MAX(0, A[1])

for j = 2 to N
    max’ = MAX(max’+A[j], A[j], 0)
    max = MAX(max, max’)

return max
```

$$T(N) = \Theta(N)$$
/**
 * Linear-time maximum contiguous subsequence sum algorithm.
 */

int maxSubSum4(const vector<int> & a)
{
 int maxSum = 0, thisSum = 0;

 for(int j = 0; j < a.size(); j++)
 {
 thisSum += a[j];

 if(thisSum > maxSum)
 maxSum = thisSum;
 else if(thisSum < 0)
 thisSum = 0;
 }
 return maxSum;
}
What are the space complexities of all 5 versions of the code?

MaxSubSum Running Times

<table>
<thead>
<tr>
<th>Input Size</th>
<th>1 $O(N^3)$</th>
<th>2 $O(N^2)$</th>
<th>3 $O(N \log N)$</th>
<th>4 and 5 $O(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 10$</td>
<td>0.0000009</td>
<td>0.000004</td>
<td>0.000006</td>
<td>0.000003</td>
</tr>
<tr>
<td>$N = 100$</td>
<td>0.002580</td>
<td>0.000109</td>
<td>0.000045</td>
<td>0.000006</td>
</tr>
<tr>
<td>$N = 1,000$</td>
<td>2.281013</td>
<td>0.010203</td>
<td>0.000485</td>
<td>0.000031</td>
</tr>
<tr>
<td>$N = 10,000$</td>
<td>NA</td>
<td>1.2329</td>
<td>0.005712</td>
<td>0.000317</td>
</tr>
<tr>
<td>$N = 100,000$</td>
<td>NA</td>
<td>135</td>
<td>0.064618</td>
<td>0.003206</td>
</tr>
</tbody>
</table>

Do not include array read times.

38 min

26 days
MaxSubSum Running Times

![Graph showing running times for different complexities: Linear, O(N log N), Quadratic, and Cubic.](image)
Logarithmic Behavior

- $T(N) = O(\log_2 N)$
- Usually occurs when
 - Problem can be halved in constant time
 - Solutions to sub-problems combined in constant time
- Examples
 - Binary search
 - Euclid’s algorithm
 - Exponentiation

For off-class reading:
- read book
- slides for lecture notes
 from course website
Binary Search

- Given an integer \(X \) and integers \(A_0, A_1, \ldots, A_{N-1} \), which are presorted and already in memory, find \(i \) such that \(A_i = X \), or return \(i = -1 \) if \(X \) is not in the input.

- \(T(N) = O(\log_2 N) \)
/**
 * Performs the standard binary search using two comparisons per level.
 * Returns index where item is found or -1 if not found.
 */

template <typename Comparable>
int binarySearch(const vector<Comparable> & a, const Comparable & x)
{
 int low = 0, high = a.size() - 1;

 while(low <= high)
 {
 int mid = (low + high) / 2;

 if(a[mid] < x)
 low = mid + 1;
 else if(a[mid] > x)
 high = mid - 1;
 else
 return mid; // Found
 }

 return NOT_FOUND; // NOT_FOUND is defined as -1
Euclid’s Algorithm

- Compute the greatest common divisor $\gcd(M,N)$ between the integers M and N
 - I.e., largest integer that divides both
 - Used in encryption
Euclid’s Algorithm

```c
1 long gcd( long m, long n )
2 {
3     while( n != 0 )
4         {
5             long rem = m % n;
6             m = n;
7             n = rem;
8         }
9         return m;
10    }
```

Example: gcd(3360,225)
- \(m = 3360, n = 225\)
- \(m = 225, n = 210\)
- \(m = 210, n = 15\)
- \(m = 15, n = 0\)
Euclid’s Algorithm: Analysis

- Note: After two iterations, remainder is at most half its original value
 - Thm. 2.1: If $M > N$, then $M \mod N < M/2$
- $T(N) = 2 \log_2 N = O(\log_2 N)$
 - $\log_2 225 \approx 7.8$, $T(225) = 16$ (?)
- Better worst case: $T(N) = 1.44 \log_2 N$
 - $T(225) = 11$
- Average case: $T(N) = (12 \ln 2 \ln N) / \pi^2 + 1.47$
 - $T(225) = 6$
Exponentiation

- Compute X^N
- Obvious algorithm:
  ```python
  def pow(x, n):
      result = 1
      for i = 1 to n
          result = result * x
      return result
  ```
- Observation
 - $X^N = X^{N/2} * X^{N/2}$ (for even N)
 - $X^N = X^{(N-1)/2} * X^{(N-1)/2} * X$ (for odd N)
- Minimize multiplications $T(N)$
 - $T(N) = 2 \log_2 N = O(\log_2 N)$
Exponentiation

```c
long pow( long x, int n )
{
    if( n == 0 ) return 1;
    if( n == 1 ) return x;
    if( isEven( n ) )
        return pow( x * x, n / 2 );
    else
        return pow( x * x, n / 2 ) * x;
}
```

- $T(N) = \Theta(1)$, $N \leq 1$
- $T(N) = T(N/2) + \Theta(1)$, $N > 1$
- $T(N) = O(\log_2 N)$
- $T(N) = \Theta(\log_2 N)$?
Summary

- Algorithm analysis
- Bound running time as input gets big
- Rate of growth
- Compare algorithms
- Recursion and logarithmic behavior