Introduction to Automata Theory

Reading: Chapter 1
What is Automata Theory?

- Study of abstract computing devices, or “machines”
- Automaton = an abstract computing device
 - Note: A “device” need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The *theory of computation*
- Computability vs. Complexity
Alan Turing (1912-1954)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called Turing machines even before computers existed

Heard of the Turing test?
Theory of Computation: A Historical Perspective

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930s</td>
<td>• Alan Turing studies Turing machines</td>
</tr>
<tr>
<td></td>
<td>• Decidability</td>
</tr>
<tr>
<td></td>
<td>• Halting problem</td>
</tr>
<tr>
<td>1940-1950s</td>
<td>• “Finite automata” machines studied</td>
</tr>
<tr>
<td></td>
<td>• Noam Chomsky proposes the “Chomsky Hierarchy” for formal languages</td>
</tr>
<tr>
<td>1969</td>
<td>Cook introduces “intractable” problems or “NP-Hard” problems</td>
</tr>
</tbody>
</table>
Languages & Grammars

- **Languages**: “A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols”

- **Grammars**: “A grammar can be regarded as a device that enumerates the sentences of a language” - nothing more, nothing less

- **N. Chomsky, Information and Control, Vol 2, 1959**

An alphabet is a set of symbols:

\{0,1\}

Or “words”

Sentences are strings of symbols:

0,1,00,01,10,1,...

A language is a set of sentences:

\(L = \{000,0100,0010,..\}\)

A grammar is a finite list of rules defining a language.

\[
\begin{align*}
S & \rightarrow 0A \\
A & \rightarrow 1A \\
A & \rightarrow 0B \\
B & \rightarrow 1B \\
B & \rightarrow 0F \\
F & \rightarrow \varepsilon \\
\end{align*}
\]
The Chomsky Hierarchy

- A containment hierarchy of classes of formal languages

- Regular (DFA)
- Context-free (PDA)
- Context-sensitive (LBA)
- Recursively-enumerable (TM)
The Central Concepts of Automata Theory
Alphabet

An alphabet is a finite, non-empty set of symbols

- We use the symbol Σ (sigma) to denote an alphabet

Examples:
- Binary: $\Sigma = \{0, 1\}$
- All lower case letters: $\Sigma = \{a, b, c, .. z\}$
- Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
- DNA molecule letters: $\Sigma = \{a, c, g, t\}$
- …
Strings

A string or word is a finite sequence of symbols chosen from Σ

- Empty string is ε (or “epsilon”)

- Length of a string w, denoted by “$|w|$”, is equal to the number of (non- ε) characters in the string
 - E.g., $x = 010100$ $|x| = 6$
 - $x = 01 \varepsilon 0 \varepsilon 1 \varepsilon 00 \varepsilon$ $|x| = ?$

- $xy = \text{concatentation of two strings } x \text{ and } y$
Powers of an alphabet

Let \(\Sigma \) be an alphabet.

- \(\Sigma^k \) = the set of all strings of length \(k \)
- \(\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots \)
- \(\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \ldots \)
Languages

L is a said to be a language over alphabet Σ, only if $L \subseteq \Sigma^*$

\Rightarrow this is because Σ^* is the set of all strings (of all possible length including 0) over the given alphabet Σ

Examples:

1. Let L be the language of all strings consisting of n 0’s followed by n 1’s:
 $$L = \{\varepsilon, 01, 0011, 000111,…\}$$
2. Let L be the language of all strings of with equal number of 0’s and 1’s:
 $$L = \{\varepsilon, 01, 10, 0011, 1100, 0101, 1010, 1001,…\}$$

Canonical ordering of strings in the language

Definition: \emptyset denotes the Empty language

- Let $L = \{\varepsilon\}$; Is $L = \emptyset$? **NO**
The Membership Problem

Given a string \(w \in \Sigma^* \) and a language \(L \) over \(\Sigma \), decide whether or not \(w \in L \).

Example:

Let \(w = 100011 \)

Q) Is \(w \in \) the language of strings with equal number of 0s and 1s?
Finite Automata

Some Applications

- Software for designing and checking the behavior of digital circuits
- Lexical analyzer of a typical compiler
- Software for scanning large bodies of text (e.g., web pages) for pattern finding
- Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)
Finite Automata : Examples

- On/Off switch

- Modeling recognition of the word "then"
Structural expressions

- Grammars
- Regular expressions
 - E.g., unix style to capture city names such as “Palo Alto CA”:
 - \([A-Z][a-z]*([\])[A-Z][a-z]*\)[]\([A-Z][A-Z]\)

- Start with a letter
- A string of other letters (possibly empty)
- Should end w/ 2-letter state code
- Other space delimited words (part of city name)
Formal Proofs
Deductive Proofs

From the given statement(s) to a conclusion statement (what we want to prove)

- Logical progression by direct implications

Example for parsing a statement:

- “If \(y \geq 4 \), then \(2^y \geq y^2 \).”

given | *conclusion*

(there are other ways of writing this).
Example: Deductive proof

Let **Claim 1**: If \(y \geq 4 \), then \(2^y \geq y^2 \).

Let \(x \) be any number which is obtained by adding the squares of 4 positive integers.

Claim 2:
Given \(x \) and assuming that Claim 1 is true, prove that \(2^x \geq x^2 \)

Proof:
1) Given: \(x = a^2 + b^2 + c^2 + d^2 \)
2) Given: \(a \geq 1, b \geq 1, c \geq 1, d \geq 1 \)
3) \(\Rightarrow a^2 \geq 1, b^2 \geq 1, c^2 \geq 1, d^2 \geq 1 \) (by 2)
4) \(\Rightarrow x \geq 4 \) (by 1 & 3)
5) \(\Rightarrow 2^x \geq x^2 \) (by 4 and Claim 1)

“implies” or “follows”
On Theorems, Lemmas and Corollaries

We typically refer to:

- A major result as a “**theorem**”
- An intermediate result that we show to prove a larger result as a “**lemma**”
- A result that follows from an already proven result as a “**corollary**”

An example:

Theorem: The height of an n-node binary tree is at least $\lfloor \log_2 n \rfloor$.

Lemma: Level i of a perfect binary tree has 2^i nodes.

Corollary: A perfect binary tree of height h has $2^{h+1} - 1$ nodes.
Quantifiers

“For all” or “For every”
- Universal proofs
- Notation= \forall

“There exists”
- Used in existential proofs
- Notation= \exists

Implication is denoted by =>
- E.g., “IF A THEN B” can also be written as “A=>B”
Proving techniques

- By contradiction
 - Start with the statement contradictory to the given statement
 - E.g., To prove \((A \implies B)\), we start with:
 - \((A \land \neg B)\)
 - … and then show that could never happen

 What if you want to prove that \((A \land B \implies C \lor D)\)?

- By induction
 - (3 steps) Basis, inductive hypothesis, inductive step

- By contrapositive statement
 - If \(A\) then \(B\) \(\equiv\) If \(\neg B\) then \(\neg A\)
Proving techniques…

- By counter-example
 - Show an example that disproves the claim

- Note: There is no such thing called a “proof by example”!
 - So when asked to prove a claim, an example that satisfied that claim is *not* a proof
Different ways of saying the same thing

“If H then C”:

i. H implies C

ii. $H \implies C$

iii. C if H

iv. H only if C

v. Whenever H holds, C follows
“If-and-Only-If” statements

- “A if and only if B” \((A \iff B) \)
 - \((if \text{ part})\) if B then A \((\leq) \)
 - \((only \text{ if part})\) A only if B \((\Rightarrow) \)
 (same as “if A then B”)

- “If and only if” is abbreviated as “iff”
 - i.e., “A iff B”

- **Example:**
 - **Theorem:** Let \(x \) be a real number. Then floor of \(x = \) ceiling of \(x \) \textit{if and only if} \(x \) is an integer.

- Proofs for iff have two parts
 - One for the “if part” & another for the “only if part”
Summary

- Automata theory & a historical perspective
- Chomsky hierarchy
- Finite automata
- Alphabets, strings/words/sentences, languages
- Membership problem
- Proofs:
 - Deductive, induction, contrapositive, contradiction, counterexample
 - If and only if

- Read chapter 1 for more examples and exercises