Midterm I review

Reading: Chapters 1-4
Test Details

- In class, Wednesday, Feb. 25, 2015
 3:10pm-4pm

- Comprehensive

- Closed book, closed notes
Syllabus

- Formal proofs
- Finite Automata
 - NFA, DFA, ε-NFA
- Regular expressions
- Regular language properties
 - Pumping lemma for regular languages
 - Note: closure properties and minimization of DFAs – not included
Finite Automata

- **Deterministic Finite Automata (DFA)**
 - The machine can exist in only one state at any given time

- **Non-deterministic Finite Automata (NFA)**
 - The machine can exist in multiple states at the same time

- **ε-NFA** is an NFA that allows ε-transitions

- What are their differences?
Deterministic Finite Automata

- A DFA is defined by the 5-tuple:
 - \(\{Q, \Sigma, q_0, F, \delta\} \)
- Two ways to define:
 - State-diagram (preferred)
 - State-transition table

- DFA construction checklist:
 - Associate states with their meanings
 - Capture all possible combinations/input scenarios
 - break into cases & subcases wherever possible
 - Are outgoing transitions defined for every symbol from every state?
 - Are final/accepting states marked?
 - Possibly, dead/error-states will have to be included depending on the design.
Non-deterministic Finite Automata

- A NFA is defined by the 5-tuple:
 - \(\{ Q, \Sigma, q_0, F, \delta \} \)
- Two ways to represent:
 - State-diagram (preferred)
 - State-transition table

- NFA construction checklist:
 - Has at least one nondeterministic transition
 - Capture only valid input transitions
 - Can ignore invalid input symbol transitions (paths will die implicitly)
 - Outgoing transitions defined only for valid symbols from every state
 - Are final/accepting states marked?
NFA to DFA conversion

- Checklist for NFA to DFA conversion
 - Two approaches:
 - Enumerate all possible subsets, or
 - Use *lazy construction* strategy (to save time)
 - Introduce subset states only as needed
 - In your solutions, use the lazy construction procedure by default unless specified otherwise.
 - Any subset containing an accepting state is also accepting in the DFA
 - Have you made a special entry for Φ, the empty subset?
 - This will correspond to the dead/error state
\(\varepsilon \) -NFA to DFA conversion

- Checklist for \(\varepsilon \) -NFA to DFA conversion
 - First take ECLOSE(start state)
 - New start state = ECLOSE(start state)
 - Remember: ECLOSE(q) include q

- Then convert to DFA:
 - Use lazy construction strategy for introducing subset states only as needed (same as NFA to DFA), but …
 - Only difference: take ECLOSE after transitions and also include those states in the subset corresponding to your destination state.
 - E.g., if \(q_i \) goes to \(\{q_j, q_k\} \), then your subset must be: ECLOSE\((q_j) \) U ECLOSE\((q_k) \)

- Again, check for a special entry for \(\Phi \) if needed
Regular Expressions

- A way to express accepting patterns
- Operators for Reg. Exp.
 - (E), L(E+F), L(EF), L(E*)..
 - Capture all cases of valid input strings
 - Express each case by a reg. exp.
 - Combine all of them using the + operator
 - Pay attention to operator precedence
 - Try to reuse previously built regular expressions wherever possible
Regular Expressions...

- DFA to Regular expression
 - Enumerate all paths from start to every final state
 - Generate regular expression for each segment, and concatenate
 - Combine the reg. exp. for all each path using the + operator

- Reg. Expression to ε-NFA conversion
 - Inside-to-outside construction
 - Start making states for every atomic unit of RE
 - Combine using: concatenation, + and * operators as appropriate
 - For connecting adjacent parts, use ε-transitions
 - Remember to note down final states
Regular Expressions…

- Algebraic laws
 - Commutative
 - Associative
 - Distributive
 - Identity
 - Annihilator
 - Idempotent
 - Involving Kleene closures (* operator)
English description of lang.

- Finite automata ➔ English description
- Regular expression ➔ English description

“English description” should be similar to how we have been describing languages in class

- E.g., languages of strings over \{a,b\} that end in b; or
- Languages of binary strings that have 0 in its even position, etc.

Thumbrule: the simpler the description is, the better. However, make sure that the description should accurately capture the language.
Pumping Lemma

- **Purpose:** Regular or not? Verification technique
- **Steps/Checklist for Pumping Lemma (in order):**
 1. Let N \(\leftarrow \) pumping lemma constant
 2. Choose a template string w in L, such that \(|w| \geq N\).
 (Note: the string you choose should depend on N. And the choice of your w will affect the rest of the proof. So select w judiciously. Generally, a simple choice of w would be a good starting point. But if that doesn’t work, then go for others.)
 3. Now w should satisfy P/L, and therefore, all three conditions of the lemma. Specifically, using conditions \(|xy| \leq N\) and \(y \neq \varepsilon\), try to conclude something about the property of the xy part and y part separately.
 4. Next, use one of these two below strategies to arrive at the conclusion of \(xy^kz \notin L\) (for some value of k):
 - Pump down (k=0)
 - Pump up (k \(\geq 2\))
 Note: arriving at a contradiction using either pumping up OR down is sufficient. No need to show both.
Working out pumping lemma based proofs as a 2-player game:

- Steps (think of this 2-party game):

 Good guy (us)
 - Builds \(w \) using \(N \) (without assuming any particular value of \(N \))
 - Tries to break the third condition of P/L without assuming any particular \(\{x,y,z\} \) split
 - this is done by first pumping down (\(k=0 \))
 - if that does not work, then try pumping up (\(k \geq 2 \))

 Bad guy (someone else)
 - Claims \(L \) is regular
 - \(\Rightarrow \) Knows \(N \) and has the freedom to choose any value of \(N \geq 1 \)
 - Comes up with \(\{x,y,z\} \) combination, s.t. \(w=xyz \)
 - (again, has the freedom to choose any \(xyz \) split, but meeting the two conditions of P/L: i.e., \(|xy| \leq N \) and \(y \neq \epsilon \))
GOOD LUCK!