The Reverse Cuthill-McKee Algorithm in Distributed-Memory

Ariful Azad
Lawrence Berkeley National Laboratory (LBNL)

SIAM CSC 2016, Albuquerque
Joint work with
- Aydın Buluç
- Mathias Jacquelin
- Esmond Ng

Funding
- DOE Office of Science
- Time allocation at the DOE NERSC Center
In this talk, I consider parallel algorithms for reordering sparse matrices.

Goal: Find a permutation P so that the bandwidth/profile of PAP^T is small.
Why reordering a matrix

- Better cache reuse in SpMV [Karantasis et al. SC ‘14]
- Faster iterative solvers such as preconditioned conjugate gradients (PCG).

Example: PCG implementation in PETSc

Thermal2 (n=1.2M, nnz=4.9M)
Finding a permutation to minimize the bandwidth is NP-complete. [Papadimitriou ‘76]

Heuristics are used in practice
- Examples: the Reverse Cuthill-McKee algorithm, Sloan’s algorithm

We focus on the Reverse Cuthill-McKee (RCM) algorithm
- Simple to state
- Easy to understand
- Relatively easy to parallelize
The case for distributed-memory algorithm

- Enable solving very large problems
- More practical: The matrix is already distributed
 - gathering the distributed matrix onto a node for serial execution is expensive.

Distributed algorithms are cheaper and scalable

Time to gather a graph on a node from 45 nodes of NERSC/Edison (Cray XC30)
The RCM algorithm

Cuthill-McKee order

Start vertex (a pseudo-peripheral vertex)

Order vertices by increasing degree

Order vertices by (parents’ order, degree)

Order vertices by parents’ order

Reverse the order of vertices to obtain the RCM ordering
RCM: Challenges in parallelization
(in addition to parallelizing BFS)

- Given a start vertex, the algorithm gives a fixed ordering except for tie breaks. Not parallelization friendly.

- Unlike traditional BFS, the parent of a vertex is set to a vertex with the minimum label. (i.e., bottom-up BFS is not beneficial)

- Within a level, vertices are labeled by lexicographical order of (parents’ order, degree) pairs, needs sorting
Our approach to address parallelization challenges

- We use **specialized** level-synchronous BFS
- Key differences from traditional BFS (Buluç and Madduri, SC ’11)
 1. A parent with smaller label is preferred over another vertex with larger label
 2. The labels of parents are passed to their children
 3. Lexicographical sorting of vertices in BFS levels

- The first two of them are addressed by **sparse matrix-sparse vector multiplication (SpMSpV)** over a semiring
- The third challenge is addressed by a lightweight sorting function
Exploring the next-level vertices via SpMSpV

Overload (multiply, add) with (select2nd, min)

Current frontier

Next frontier

Adjacency matrix
Rules for ordering vertices

1. c and h are ordered before f
2. h is ordered before c

Sort degrees of the siblings many instances of small sortings (avoids expensive parallel sorting)
Distributed memory parallelization (SpMSpV)

ALGORITHM:
1. Gather vertices in processor column [communication]
2. Local multiplication [computation]
3. Find owners of the current frontier’s adjacency and exchange adjacencies in processor row [communication]
Distributed-memory partial sorting

- **Bin vertices** by their parents’ labels
 - All vertices in a bin is assigned to a single node
 - Needs AllToAll communication
- **Sequentially sort** the degree of vertices in a single node
Computation and communication complexity

<table>
<thead>
<tr>
<th>Operation</th>
<th>Per processor Computation (lower bound)</th>
<th>Per processor Comm (latency)</th>
<th>Per processor Comm (bandwidth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpMSpV</td>
<td>$\frac{m}{p}$</td>
<td>$diameter * \alpha \sqrt{p}$</td>
<td>$\beta \left(\frac{m}{p} + \frac{n}{\sqrt{p}} \right)$</td>
</tr>
<tr>
<td>Sorting</td>
<td>$\frac{n\log(n/p)}{p}$</td>
<td>$diameter * \alpha p$</td>
<td>$\beta \frac{n}{p}$</td>
</tr>
</tbody>
</table>

\(n \): number of vertices, \(m \): number of edges

\(\alpha \): latency (0.25 \(\mu \)s to 3.7 \(\mu \)s MPI latency on Edison)
\(\beta \): inverse bandwidth (~8GB/sec MPI bandwidth on Edison)
\(p \): number of processors
Other aspects of the algorithm

- Finding a pseudo peripheral vertex.
 - Repeated application of the usual BFS (no ordering of vertices within a level)

- Our SpMSpV is hybrid OpenMP-MPI implementation
 - Multithreaded SpMSpV is also fairly complicated and subject to another work
Results: Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 1.1M #edges: 89M
Bandwidth before: 1,036,475 after: 23,813

Communication dominates

30x
Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 78M
Bandwidth before: 14,169,841
#edges: 760M
Bandwidth after: 361,755

Larger graphs continue scaling
- **SpMP (Sparse Matrix Pre-processing)** package by Park et al. (https://github.com/jspark1105/SpMP)
- We switch to MPI+OpenMP after 12 cores

Single node performance
NERSC/Edison (2x12 cores)

| Matrix: ldooor | #vertices: 1M | #edges: 42M |

<table>
<thead>
<tr>
<th>Number of cores</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

If the matrix is already Distributed in 1K cores (~45 nodes)

Time to gather: 0.82 s

making the distributed algorithm more profitable
Conclusions

- For many practical problems, the RCM ordering expedites iterative solvers.
- No scalable distributed memory algorithm for RCM ordering exists.
 - forcing us gathering an already distributed matrix on a node and use serial algorithm (e.g., in PETSc), which is expensive.

- We developed a distributed-memory RCM algorithm using SpMSpV and partial sorting.
- The algorithm scales up to 1K cores on modern supercomputers.
Thanks for your attention