Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver

Overview | Centrality in complex networks

Network analysis:
- Study structural properties of networks
- Applications: social network analysis, internet, bioinformatics, marketing...

Centrality
- Ranking nodes
- Closeness centrality: *average distance* between a node and the others
- Simple and very popular, but
 - assumes information flows through shortest paths only
 - assumes information is *inseparable*
Overview | Centrality in complex networks

Electrical closeness
- Information flows through the network like electrical current
- All paths taken into account

However, requires to either invert the Laplacian matrix or solve n^2 linear systems
- expensive for large networks

Our contribution
- Two approximation algorithms
- Both require solution of Laplacian linear systems
- LAMG implementation in NetworKit
- Properties of electrical closeness and shortest-paths closeness in real-world networks
Current-flow closeness centrality

Shortest-path closeness

- Ranks nodes according to average shortest-path distance to other nodes

\[c_{SP}(v) = \frac{n - 1}{\sum_{w \in V \setminus \{v\}} d_{SP}(v, w)} \]

- Assumptions on the data

Current-flow closeness [Brandes and Fleischer, 2005]

- \(d_{SP}(v, w) \) replaced with commute time:

\[d_{CF}(v, w) = H(v, w) + H(w, v) \]

- Proportional to potential difference (effective resistance) in electrical network

- All paths are taken into account
Current-flow closeness centrality

Current-flow closeness

$$c_{CF}(v) = \frac{n - 1}{\sum_{w \in V \setminus \{v\}} d_{CF}(v, w)}$$

Graph Laplacian

- \(L := D - A \)
- It can be shown:

$$d_{CF}(v, w) = p_{vw}(v) - p_{vw}(w)$$

where

$$Lp_{vw} = b_{vw}$$

Solve the system \(Lp_{vw} = b_{vw} \quad \forall w \in V \setminus \{v\} \)

\(\Theta(nm \log(1/\tau)) \) empirical running time
Approximation
Sampling-based approximation

Current-flow closeness

\[c_{CF}(v) = \frac{n - 1}{\sum_{w \in V \setminus \{v\}} p_{vw}(v) - p_{vw}(w)} \]

Sampling-based approximation

- Set \(S = \{ s_1, s_2, \ldots, s_k \} \), \(S \subseteq V \)
- Approximation:

\[\tilde{c}_{CF}(v) := \frac{k}{n} \cdot \frac{n - 1}{\sum_{i=1}^{k} p_{vs_i}(v) - p_{vs_i}(s_i)} \]
Projection-based approximation

- Johnson-Lindenstrauss Transform:
 - project the system into lower-dymensional space spanned by \(\log n/\epsilon^2 \) random vectors
 - approximated distances are within \((1+\epsilon)\) factor from exact ones
- Effective resistance \(d_{CF}(u, v) \) can be expressed as distances between vectors in \(\{ W^{1/2} BL^\dagger e_u \}_{u \in V} \) \([\text{Spielman, Srivastava, 2011}]\)
Projection-based approximation

- Johnson-Lindenstrauss Transform:
 - project the system into lower-dimensional space spanned by $\log n/\epsilon^2$ random vectors
 - approximated distances are within $(1+\epsilon)$ factor from exact ones
- Effective resistance $d_{CF}(u, v)$ can be expressed as distances between vectors in $\{W^{1/2}BL^\dagger e_u\}_{u \in V}$ [Spielman, Srivastava, 2011]

- Weight matrix $m \times m$
- Incidence matrix $m \times n$
- Moore-Penrose Pseudoinverse of L $n \times n$
Projection-based approximation

- Johnson- Lindenstrauss Transform:
 - project the system into lower-dimensionnal space spanned by $\log n/\varepsilon^2$ random vectors
 - approximated distances are within $(1 + \varepsilon)$ factor from exact ones

- Effective resistance $d_{CF}(u, v)$ can be expressed as distances between vectors in $\{ W^{1/2} BL^\dagger e_u \}_{u \in V}$ [Spielman, Srivastava, 2011]

- Approximation $\{ QW^{1/2} BL^\dagger e_u \}_{u \in V}$, Q random projection matrix of size $k \times m$ with elements in $\{ 0, +\frac{1}{\sqrt{k}}, -\frac{1}{\sqrt{k}} \}$

- Rows of $QW^{1/2} BL^\dagger$: k linear systems:

 $$Lz_i = \{ QW^{1/2} B \}$$
Implementation
Laplacian linear systems

- Laplacian linear systems used to solve many problems in network analysis:
 - Graph partitioning
 - Approx. maximum flow
 - ...

- Important to have a fast solver implementation

- LAMG [Livne and Brandt, 2012]:
 - Algebraic multigrid:
 - Iteratively solve coarser systems
 - Prolong solutions to original systems
 - Designed for complex networks

- LAMG implementation in NetworKit
NetworKit

- a tool suite of high-performance network analysis algorithms
 - parallel algorithms
 - approximation algorithms
- features include . . .
 - community detection
 - centrality measures
 - graph generators
- free software
 - Python package with C++ backend
 - under continuous development
 - download from http://networkit.iti.kit.edu

LAMG solver implementation in NetworKit
Experiments
Approximation algorithms

- Comparison with exact algorithm: networks with up to 10^5 edges, larger instances up to 56 millions edges
- **SAMPLING**: $|S| \in \{10, 20, 50, 100, 200, 500\}$
- **PROJECTING**: $\epsilon = 0.5, 0.2, 0.1, 0.05$
Approximation algorithms

- Comparison with exact algorithm: networks with up to 10^5 edges, larger instances up to 56 millions edges
- **SAMPLING:** $|S| \in \{10, 20, 50, 100, 200, 500\}$
- **PROJECTING:** $\epsilon = 0.5, 0.2, 0.1, 0.05$
Approximation algorithms

- Comparison with exact algorithm: networks with up to 10^5 edges, larger instances up to 56 millions edges
- **Sampling:** $|S| \in \{10, 20, 50, 100, 200, 500\}$
- **Projecting:** $\alpha = 0.5, 0.2, 0.1, 0.05$

- Approximation with 20 samples on average ≈ 2 seconds
- Exact approach more than 20 minutes
Comparison with shortest-path closeness

Differentiation among different nodes

- Real-world complex networks have small diameters
- Many nodes have similar shortest-path closeness
Comparison with shortest-path closeness

Resilience to noise

- Add new edges to the graph
- Recompute ranking

![Graph showing comparison between current-flow closeness and shortest-path closeness.](image)
Conclusions and future work

- Two approximation algorithms for current-flow closeness of one node
- Current-flow closeness is an interesting alternative to shortest-path closeness
 - What about electrical betweenness?
- Finding the most central nodes faster? (Shortest-path closeness: [Bergamini et al., ALENEX 2016])
- Group centrality
Conclusions and future work

- Two approximation algorithms for current-flow closeness of one node
- Current-flow closeness is an interesting alternative to shortest-path closeness
 - What about electrical betweenness?
- Finding the most central nodes faster?
 (Shortest-path closeness: [Bergamini et al., ALENEX 2016])
- Group centrality

Thank you for your attention!
Graph as electrical network

- Edge \(\{u, v\} \): resistor with conductance \(\omega_{uv} \)
- Supply \(b: V \to \mathbb{R} \)
- \(b(s) = +1, b(t) = -1 \) ➔ current flowing through the network

Potential \(p_{st}(v) \) \(\forall v \in V \)

Current \(e_{uv} \) flowing through \(\{u, v\} \): \((p_{st}(u) - p_{st}(v)) \cdot \omega_{uv} \)
Introduction | Laplacian and electrical networks

- Graph as electrical network
- Edge \(\{u, v\} \): resistor with conductance \(\omega_{uv} \)
- Supply \(b : V \rightarrow \mathbb{R} \)
- \(b(s) = +1, \ b(t) = -1 \) ➡️ current flowing through the network

Potential can be computed solving the linear system:

\[
L \rho_{st} = b_{st}
\]

where \(L := D - A \)