Byzantine Agreement Redux (TvS 7.2.3)

• Complicated stuff, explanation series #2…..

• Recall if
 – Independent failures (no collusion/conspiracies)
 – No two-faced behavior

Then can
 – Vote on 2k+1 replies/values
 – Tolerate k bad values

• Harder if either condition not true

• Generic goal:
 – Have all non-faulty processes reach consensus
 – Do it in a finite number of steps

Baseline Problem

• Easier base case: “two-army problem”
 – Red army in valley
 – 2 Blue armies camped on hillsides (Blue1 and Blue2)
 – Blue1 and Blue2 must agree on one bit (attack/retreat)
 – Complication: unreliable message delivery: courier can be captured
 • I.e., omission failure of link

• Bottom line
 – After any step, Blue1 and Blue2 cannot be sure the other
 got the last message
 – Ergo, if that step was needed in the protocol, one cannot
 finalize the agreement
 – Intuitive inductive argument shows agreement can never
 be reached.

Harder Problem

• Assumptions
 – Communication is perfect
 – Processes (generals) are not perfect
 – “Byzantine Generals problem”

• Definition
 – Red army is still encamped in valley
 – {Blue(1), …, Blue(N)} armies camped in hills
 – Communication is point-point and perfect
 • Maybe telephone, or radio with no jamming
 – M of N generals are traitors (faulty) and try to prevent the
 (N-M) loyal (correct) generals from correct agreement
 – Problem: algorithm where correct generals reach agreement

Harder Problem (cont)

• Generalize the problem
 – Each general knows his/her troop strength

• Goal: exchange troop strengths so when done
 – Each general has vector of N troop strengths
 – General(i) loyal ➔ all loyal generals have correct #Blue(i)
 – General(i) traitor: undefined for loyal and traitor generals

• Recursive algorithm from Lamport et al 1982
Example where $N=4$ and $M=1$, takes 4 steps:
1. Every general sends a (reliable) message to every other general with its troop strength (a)
2. Each general sends the others vector received in #1 (b)
3. Each general sends others vectors received in #2 (c)
4. Generals vote; correct ones decide (1,2,UNKNOWN,4)

Steps again
3. Each general sends others vectors received in #2 (c)
4. Generals vote; correct ones decide (1,2,UNKNOWN,4)

• Algorithm generalizes to more than $N=4$, $M=1$ recursively
 – Will cover when we go through the paper(s), Lamport et al 1982…

• Consider case $N=3$, $M=1$ & same algorithm:
 – Lamport et al 1982 proof: with M faulty processes, need $(2M+1)$ correct ones to reach agreement

• Intuition: need to achieve a majority vote among loyal generals
• Need to ensure that
 – Vote with M traitors,
 – And any loyalists misled (temporarily confused) by traitors
 – Still adds up to the majority vote of the loyalists

• Can only ensure this when $>2/3$ of votes same
• I.e., if $>2/3$ of generals agree on same decision, must be the same majority vote by the loyal generals
• $M=3$, $N=(3M+1)=10$ …
 – 3 traitors, detected as such
 – 3 loyal but misled generals
 – Leaves 4 to outvote the 3 misled loyal generals