Homework 4 Solutions

10.2) Overflow for signed numbers only occurs when adding numbers with the same sign (positive or negative). The numbers overflow (V) if the sign of the result Y does not match the sign of the inputs A and B :

$$
V=A N-1 B N-1 Y N-1+A N-1 B N-1 Y N-1
$$

11.5) (a) $\mathrm{B}=512 . \mathrm{H}=20$. A 10 -input NAND gate has a logical effort of $12 / 3$, so estimate that the path logical effort is about 4 . Hence $\mathrm{F}=\mathrm{GBH}=40960$. The best number of stages is $\log 4 \mathrm{~F}=7.66$, so try an 8 -stage design: NAND3-INV-NAND2-INV-NAND2-INV-INV-INV. This design has an actual logical effort of $\mathrm{G}=(5 / 3) *(4 / 3) *(4 / 3)=2.96$, so the actual path effort is 30340 . The path parasitic delay is $\mathrm{P}=3+1+2+1+2+1+1+1=12 . \mathrm{D}=\mathrm{NF} 1 / \mathrm{N}+\mathrm{P}=41.1 \tau$. (b) The best number of stages for a domino path is typically comparable to the best number for a static path because both the best stage effort and the path effort decrease for domino. Using the same design, the footless domino path has a path logical effort of $\mathrm{G}=1 *(5 / 6) *(2 / 3) *(5 / 6) *(2 / 3) *(5 / 6) *(1 / 3) *(5 / 6)=0.071$ and a path effort of $\mathrm{F}=732$. The path parasitic delay is $\mathrm{P}=4 / 3+5 / 6+3 / 3+5 / 6+3 /$ $3+5 / 6+1 / 3+5 / 6=7 . \mathrm{D}=\mathrm{NF} 1 / \mathrm{N}+\mathrm{P}=25.2 \tau$.
11.10

11.12) NAND ROMs use series rather than parallel transistors and one-cold rather than one-hot wordlines. They tend to be smaller than NOR ROMs because they do not require contacts between the series transistors, but they are also slower because of the series transistors.

