Consider the circuit shown below. The switch has been in position a for a long time. At time $t = 0$ the switch moves to position b.

i) Find voltage $v_0(t)$ for $t \geq 0$.

ii) Find a state variable representation for the circuit for $t \geq 0$. Specify all required initial conditions.

Solution.
1. When the switch is in position a, find the initial conditions for capacitor voltage and inductor current.

2. When the switch moves to position b, let R be the parallel combination of the 24 k and 12 k resistors, and derive the differential equation for the capacitor voltage, $v_C(t)$. Solve the differential equation.

3. Solve for the voltage $v_0(t)$ in terms of $v_C(t)$.

4. Define state variables from the differential equation for $v_C(t)$. Solve for voltage $v_0(t)$ in terms of the state variables. Use Matlab to solve. Plot the solution.
\[
\frac{d^2 v_C}{dt^2} + \frac{R}{L} \frac{dv_C}{dt} + \frac{1}{LC} v_C = \frac{1}{LC} v_i(t), \quad v_C(0^+) = -16, \quad \frac{dv_C(0^+)}{dt} = \frac{0.003}{C}
\]

\[
A = \begin{bmatrix}
0 & 1 \\
-1/L & -R/L \\
\end{bmatrix}, \quad B = \begin{bmatrix}
0 \\
1/LC \\
\end{bmatrix}, \quad C = [1 \ R \ C], \quad D = [0]
\]

```matlab
function state_variables_example3
% Example of state variables
% L = 0.1 H, R = 560 ohm, Cap = 10^(-7) F
L=0.2;Cap=8e-9;R=8000;
A=[0 1;-1/(L*Cap) -R/L];B=[0;1/(L*Cap)];C=[1 R*Cap];D=[0];
sys1=ss(A,B,C,D); % Form sys1 as the state space model
x0=[-16;0.003/Cap];
t=[0:0.000001:0.00025];
vi=20*ones(1,length(t)); % unit step input
[y,x]=lsim(sys1,vi,t,x0);
figure(1)
subplot(2,1,1)
pplot(t,y(:,1))
xxlabel('Time, t, sec')
yylabel('Voltage, v_0(t), V')
title('Voltage, v_0(t), Example Lecture 4')
subplot(2,1,2)
pplot(t,x(:,1))
xxlabel('Time, t, sec')
yylabel('Voltage, v_C(t), V')
title('Capacitor Voltage, v_C(t), Example Lecture 4')
```