Adversarial Search

School of EECS
Washington State University
Games

- Classic AI challenge
 - Easy to represent
 - Difficult to solve
- Zero-sum games
 - Total final reward to all players is constant
- Perfect information (e.g., Chess, Checkers)
 - Fully observable and deterministic
- Imperfect information (e.g., Poker)
- Chance (e.g., Backgammon)
Tic–Tac–Toe

- Average branching factor about 2
- Average game length about 8
- Search tree has about $2^8 = 256$ nodes
- State space (search graph) has about $3^9 = 19,683$ nodes
Game Tree

- MAX wants to maximize its outcome
- MIN wants to minimize its outcome
- Search tree refers to the search for a player’s next move
- Terminal node
- Utility
Chess

- Average branching factor about 35
- Average game length about 100 (50 moves per player)
- Search tree has about $35^{100} = 10^{154}$ nodes
- State space (search graph) about 10^{40} nodes

Garry Kasparov vs. IBM’s Deep Blue (1997)
Go

- Average branching factor about 250
- Average game length about 200 (100 moves per player)
- Search tree has about $250^{200} = 10^{480}$ nodes
- State space (search graph) about 10^{170} nodes

Lee Sedol vs. Google DeepMind’s AlphaGo (2016)

[Link to Wired article](https://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go)
Optimal Play

- Minimax value
 - Best player can achieve assuming all players play optimally
 \[
 \text{Minimax}(s) = \begin{cases}
 \text{Utility}(s) & \text{if TerminalTest}(s) \\
 \max_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MAX} \\
 \min_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MIN}
 \end{cases}
 \]

- Minimax decision
 - Action that leads to minimax value
Optimal Play

MAX

MIN

Artificial Intelligence
Minimax Algorithm

function **MINIMAX-DECISION** \((state)\) returns an action
 return \(\text{arg max}_{a \in \text{ACTIONS}(state)} \text{MIN-VALUE(RESULT}(state,a))\)

function **MAX-VALUE** \((state)\) returns a utility value
 if **TERMINAL-TEST**\((state)\) then return **UTILITY**\((state)\)
 \(v \leftarrow -\infty\)
 for each \(a\) in \(\text{ACTIONS}(state)\) do
 \(v \leftarrow \text{MAX}(v, \text{MIN-VALUE(RESULT}(state,a)))\)
 return \(v\)

function **MIN-VALUE** \((state)\) returns a utility value
 if **TERMINAL-TEST**\((state)\) then return **UTILITY**\((state)\)
 \(v \leftarrow \infty\)
 for each \(a\) in \(\text{ACTIONS}(state)\) do
 \(v \leftarrow \text{MIN}(v, \text{MAX-VALUE(RESULT}(state,a)))\)
 return \(v\)
Minimax Demo

- www.yosenspace.com/posts/computer-science-game-trees.html
Minimax Algorithm

- Essentially depth-first search of game tree
- Time complexity: \(O(b^m)\)
 - \(m = \) maximum tree depth
 - \(b = \) legal moves at each state
- Space complexity
 - Generates all actions: \(O(bm)\)
 - Generates one action: \(O(m)\)
- Practical?
Pruning Search Tree

(a) \([-\infty, +\infty]\)

(b) \([-\infty, +\infty]\)

(c) \([3, +\infty]\)

(d) \([3, +\infty]\)

(e) \([3, 14]\)

(f) \([3, 3]\)
Prune parts of the search tree that MAX and MIN would never choose

- \(\alpha = \) value of best choice for MAX so far (highest value)
- \(\beta = \) value of best choice for MIN so far (lowest value)

Keep track of alpha \(\alpha \) and beta \(\beta \) during search

If \(m > n \), Player will never move to \(n \).
function **ALPHA-BETA-SEARCH** (*state*) **returns** an action
\[v \leftarrow \text{MAX-VALUE}(*state*, -\infty, +\infty) \]
return the *action* in ACTIONS(*state*) with value \(v \)

function **MAX-VALUE** (*state*, \(\alpha \), \(\beta \)) **returns** a utility value
\[
\text{if } \text{TERMINAL-TEST}(*state*) \text{ then return } \text{UTILITY}(*state*) \\
v \leftarrow -\infty \\
\text{for each } a \text{ in ACTIONS(*state*) do} \\
\hspace{1cm} v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(*\text{RESULT}(*state*,a), \alpha, \beta)) \\
\text{if } v \geq \beta \text{ then return } v \\
\hspace{1cm} \alpha \leftarrow \text{MAX}(\alpha, v) \\
return \(v \)

function **MIN-VALUE** (*state*, \(\alpha \), \(\beta \)) **returns** a utility value
\[
\text{if } \text{TERMINAL-TEST}(*state*) \text{ then return } \text{UTILITY}(*state*) \\
v \leftarrow +\infty \\
\text{for each } a \text{ in ACTIONS(*state*) do} \\
\hspace{1cm} v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(*\text{RESULT}(*state*,a), \alpha, \beta)) \\
\text{if } v \leq \alpha \text{ then return } v \\
\hspace{1cm} \beta \leftarrow \text{MIN}(\beta, v) \\
return \(v \)
Alpha–Beta Pruning Demo

- www.yosenspace.com/posts/computer-science-game-trees.html
- inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice
Move Ordering

- **ALPHA-BETA-SEARCH** still $O(b^m)$ worst case
- If order moves by value, then could prune maximally (always choose best move next)
 - Achieve $O(b^{m/2})$ time
 - Effective branching factor $b^{1/2}$
 - Chess: $35 \rightarrow 6$
 - But not practical
- Choosing moves randomly
 - Achieve $O(b^{3m/4})$
- Choosing moves based on impact
 - E.g., chess: captures, threats, forward, backward
 - Closer to $O(b^{m/2})$
Real-Time Game Play

- Minimax and Alpha-Beta both need to search to some terminal nodes
- Impractical for most games due to time limits
- Employ a cutoff test to treat nodes as terminal nodes
- Use a heuristic evaluation function at these nodes to estimate utility
- Depth d

\[
H - \text{Minimax}(s,d) = \begin{cases}
\text{Eval}(s) & \text{if CutoffTest}(s,d) \\
\max_{a \in \text{Actions}(s)} H - \text{Minimax}(%(\text{Result}(s,a),d + 1)) & \text{if Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} H - \text{Minimax}(%(\text{Result}(s,a),d + 1)) & \text{if Player}(s) = \text{MIN}
\end{cases}
\]
Heuristic evaluation function \(\text{EVAL}(s) \)

- Weighted linear combination of features
 \[
 \text{Eval}(s) = \sum_{i=1}^{n} w_i f_i(s)
 \]

 - E.g., chess
 - \(f_1(s) = \#\text{pawns}, w_1 = 1 \)
 - \(f_4(s) = \#\text{bishops}, w_4 = 3 \)

- Weighted non-linear combination of features
- Learning the weights
Real–Time Game Play

- Cutoff test
 - Cutoff at a fixed depth limit
 - Iterative deepening until time runs out
 - Cutoff only at quiescent states
 - No eminent large changes in evaluation function
 - E.g., captures in chess
 - Horizon effect pushes inevitable bad outcomes beyond cutoff depth
 - Singular extension continues search along moves that look clearly better than others
Other Speedups

- Transposition table
 - States can be reached from different paths
 - Hash table keeps track of explored states and their values

- Opening and ending move databases
 - Fewer choices at opening and end of game
 - Memorize optimal strategies
Element of chance (e.g., dice roll)
Include **chance nodes** in game tree
 - Branch to possible outcomes with their probabilities

Artificial Intelligence 21
Stochastic Games

- Can’t compute minimax values
- Can compute expected minimax values

\[
\text{ExpectiMinimax}(s) =
\begin{cases}
\text{Utility}(s) & \text{if} & \text{TerminalTest}(s) \\
\max_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if} & \text{Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if} & \text{Player}(s) = \text{MIN} \\
\sum_{r} P(r) \text{ExpectiMinimax}(\text{Result}(s, r)) & \text{if} & \text{Player}(s) = \text{CHANCE}
\end{cases}
\]

- \(r \) represents possible chance event (e.g., dice roll)
- \(\text{Result}(s, r) = \text{state } s \text{ with a particular outcome } r \)
Stochastic Games

- Chance nodes increase branching factor
- Search time complexity $O(b^{mn^m})$
 - Where n is the number of chance outcomes
 - E.g., backgammon: $n = 21$, $b \approx 20$ (can be large)
 - Can only search a few moves ahead
- Estimate ExpectiMinimax values
Partially Observable Games

- Can reason about all possible states of unknown information
- If $P(s)$ represents probability of each unknown state s, then best best move is:

$$\arg \max_a \sum_s P(s) \text{Minimax}(\text{Result}(s, a))$$

- If $|s|$ too large, take a random sample
 - Monte Carlo method
State of the Art

- **Chess**
 - Komodo (komodochess.com) – proprietary
 - Stockfish (stockfishchess.org) – open source

- **Checkers (solved, perfect play)**
 - Chinook (webdocs.cs.ualberta.ca/~chinook)
 - Open/close database plus brute-force search

- **Backgammon**
 - Extreme Gammon (www.extremegammon.com)
 - GNU Backgammon (www.gnubg.org)
 - Neural network based evaluation function

- **Poker**
 - Hyperborean (poker.cs.ualberta.ca)
 - Economic theory: Nash equilibrium, regret minimization

- **Go (Hard: 19x19 board, b >200)**
 - AlphaGo (deepmind.com/research/alphago)
 - Zen (senseis.xmp.net/?ZenGoProgram)
Summary

- Adversarial search and games
- Minimax search
- Alpha–beta pruning
- Real–time issues
- Stochastic and partially observable games
- State of the art …