Intelligent Agents

School of EECS
Washington State University
Overview

- What is an agent?
- Rational agent
- Types of environments
- Types of agents
Agent

- An agent perceives its environment through sensors and acts on its environment through actuators.
- Perceptual inputs to the agent are called percepts.
- Percept sequence is the complete history of the agent’s percepts.
Agent

- **Agent function** maps percept sequence to action
- **Agent program** implements agent function

Vacuum World

Vacuum Agent Function

[A, Dirty] → Suck
[B, Dirty] → Suck
[A, Clean] → Right
[B, Clean] → Left

Vacuum Agent Program

```plaintext
Action VacuumAgent (Percept percept) {
  if (percept = [?, Dirty])
    then return Suck
  if (percept = [A, Clean])
    then return Right
  if (percept = [B, Clean])
    then return Left
}
```
Rational Agent

- Rational Agent takes actions that maximize the performance measure given the percept sequence and any prior knowledge.

- Performance measures?
- Prior knowledge?
- Is VacuumAgent rational?
Rational Agent

- Not omniscient
- Acts to gather information (exploration)
- Learns and adapts (autonomy)
“Rational” Taxicab Agent

- Depends on the task

Johnny Cab from “Total Recall” (1990)
Task Environment

PEAS
- **Performance**
- **Environment**
- **Actuators**
- **Sensors**

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Performance</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi Driver</td>
<td>Safety, speed, comfort, maximize profits</td>
<td>Roads, traffic, pedestrians, customers</td>
<td>Steering, accelerator, brake, signal, horn, display</td>
<td>Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard</td>
</tr>
</tbody>
</table>
Task Environment Examples

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Performance</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puzzle solver</td>
<td>Speed, puzzles correctly solved</td>
<td>Puzzle</td>
<td>Hands</td>
<td>Camera, hand position</td>
</tr>
<tr>
<td>Part picker</td>
<td>Percent of parts in correct bins</td>
<td>Conveyor belt with parts; bins</td>
<td>Jointed arm and hand</td>
<td>Camera, joint angles</td>
</tr>
</tbody>
</table>
Task Environment Properties

- Fully observable vs. partially observable
 - Do sensors give complete state of environment

- Single agent vs. multiagent
 - Are there other agents in the environment whose performance is affected by this agent

- Puzzle solver?
- Part picker?
Task Environment Properties

- Deterministic vs. stochastic
 - Next state of environment completely determined by current state and agent’s action

- Episodic vs. sequential
 - Future percepts and actions do not depend on past percepts and actions

- Puzzle solver?
- Part picker?
Task Environment Properties

- Static vs. dynamic
 - Can the environment change while the agent is deliberating

- Discrete vs. continuous
 - Are there a fixed number of environment states

- Known vs. unknown
 - Are the effects of actions known

- Puzzle solver?
- Part picker?
Wumpus World

- Hunt the Wumpus game
 - Written in BASIC, 1972
 - First available on the TI-99/4A
Wumpus World (PEAS)

- **Performance measure**
 - +1000 for leaving cave with gold
 - –1000 for falling in pit or being eaten by wumpus
 - –1 for each action taken
 - –10 for using the arrow
 - Game ends when agent dies or leaves cave
Wumpus World (PEAS)

- **Environment**
 - 4x4 grid of rooms
 - Agent starts in square [1,1] facing right
 - Location of wumpus and gold chosen at random other than [1,1]
 - Each square other than [1,1] has a 0.2 probability of containing a pit
Wumpus World (PEAS)

- **Actuators**
 - **Forward**
 - **TurnLeft by 90°**
 - **TurnRight by 90°**
 - **Grab** picks up gold if agent in gold location
 - **Shoot** shoots arrow in direction agent is facing
 - Arrow continues until hits wumpus or wall
 - **Climb** leaves cave if agent in [1,1]
Wumpus World (PEAS)

- Sensors (Boolean)
 - **Stench** if wumpus in directly (not diagonally) adjacent square
 - **Breeze** if pit in directly adjacent square
 - **Glitter** if gold in agent’s current square
 - **Bump** if agent walks into a wall
 - **Scream** if wumpus is killed
Wumpus Environment

- Fully or partially observable?
- Discrete or continuous?
- Static or dynamic?
- Deterministic or stochastic?
- Single or multi-agent?
- Episodic or sequential?
- Known or unknown?
Basic Agent Program

- Details of design based on task (PEAS) and properties of environment

```plaintext
Action Agent (Percept percept)
{
    Process percept
    Choose action
    return action
}
```
Table–driven Agent

- Table: Percepts → Actions
- Where does table come from?
- How large is table?

Action TableDrivenAgent (Percept percept)
{
 PerceptSequence percepts
 Table T

 Append percept to end of percepts
 action = Lookup (percepts, T)
 return action
}
Simple Reflex Agent

- Where do rules come from?
- Random component to avoid repetitive behavior

```
Action SimpleReflexAgent (Percept percept) {
    RuleSet rules

    state = InterpretInput (percept)
    rule = RuleMatch (state, rules)
    action = rule.action
    return action
}
```
Model describes how world evolves and effects of actions
Where do model and rules come from?
How to represent state and model?

Action ModelBasedReflexAgent (Percept percept)
{
 RuleSet rules
 Model model

 state = UpdateState (state, action, percept, model)
 rule = RuleMatch (state, rules)
 action = rule.action
 return action
}
Goal–based Agent

- Search for sequence of actions to achieve goals
- Model, state, goals
 - Source?
 - Representation?
Utility–based Agent

- Search for sequence of actions to reach a high utility state
- Maximize expected utility
- Model, state, utility
 - Source?
 - Representation?
Learning Agent

- Learning element changes agent to improve performance
 - Models, rules, goals
- Performance element one of previous agents
- Critic provides feedback on how the agent is doing
- Problem generator drives agent to explore
State Representation

- Expressiveness vs. complexity of reasoning and learning
- Taxi world state?

Single variable
- Feature vector
- Propositional logic
- Bayesian network

(b) Factored
- First-order logic
- Graph

(b) Structured
- Relational database
- Graph
Rational agent seeks to maximize performance
Agent’s task defined in terms of performance, environment, actuators and sensors
Agent’s environment defined in terms of multiple dimensions (observability, …)
Agent’s function defined in terms of reflexes, models, goals or utilities
All agents can benefit from learning