Exam 1 Outline

The following outlines the topics you should know, and the things you need to be able to do, for the exam. In general, you will not be responsible for C++ code presented in class, except as noted in the outline; however, you may need to read and understand C++ code presented on the exam. The exam will be closed book, closed notes, and closed computer.

Introduction
- What is the point of this class?

Math Review
- Floors, ceilings, exponents and logarithms: Definitions and manipulations
- Factorials and Stirling’s approximation
- Series: Definitions, manipulations, arithmetic and geometric series closed form
- Modular arithmetic
- Proofs: Know definition, components, and how to use the following
 - Proof by induction
 - Proof by counterexample
 - Proof by contradiction
- Recursion
 - Know definition and rules
 - Analyze running time of recursive algorithm

C++ Review
- Know definitions and how to use the following
 - Class, method, encapsulation
 - Constructor, destructor, accessor, mutator
 - Reference variable (\&x) and call by reference
 - Copy constructor, operator overloading, operator=
 - Templates

Algorithm Analysis
- Why analyze an algorithm?
- What do we measure and how do we measure it?
- Line-by-line analysis
- Best-case, worst-case and average-case analysis
- Rate of growth: Definitions and notation (O, \Omega, \Theta, o)
- Maximum subsequence sum problem
 - Definition
 - Four different algorithms
 - Analysis of each algorithm
- Binary search problem: Definition, algorithm, analysis
Abstract Data Types

- Lists
 - Operations: Insert, Delete, Search
 - Implementations: vectors, singly-linked lists, double-linked lists, sentinels
 - Analysis of operations for each implementation

- Stacks
 - Operations: Push, Pop, Top
 - Implementations: linked-list, vector
 - Analysis of operations for each implementation

- Queues
 - Operations: Enqueue, dequeue
 - Implementations: linked-list, vector
 - Analysis of operations for each implementation

- Standard Template Library (STL)
 - Use of vector, list, stack and queue template classes
 - Use of iterators

Trees

- Definitions: root, leaf, child, parent, ancestor, descendant, path, height, depth
- Binary tree: Definition, traversals
- Binary search tree (BST)
 - Definition
 - Operations: Insert, Delete, Search, FindMin, FindMax, traversals
 - Know how to perform these on a BST and show resulting BST
 - Know worst-case and average-case analysis of performance

- AVL trees
 - Definition
 - Operations: Rotations, Insert, Lazy Delete, Search, FindMin, FindMax, traversals
 - Know how to perform these on an AVL tree and show resulting AVL tree
 - Know worst-case performance

- Splay trees
 - Definition
 - Operations: Rotations, Zig-Zag, Zig-Zig, Insert, Delete, Search, FindMin, FindMax, traversals
 - Know how to perform these on a Splay tree and show resulting Splay tree
 - Know amortized cost per operation

- B-trees
 - Definition and properties
 - M and L, and how to choose them
 - Operations: Insert, Delete, Search
 - Know how to perform these on a B-tree and show resulting B-tree
 - Know worst-case performance

- STL set and map classes
 - Differences
 - How to use them