Disjoint Sets

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Disjoint Sets

- Data structure for problems requiring equivalence relations
 - I.e., Are two elements in the same equivalence class
- Applications
 - Reachability of components in a graph
- Disjoint sets provide a simple, fast solution
 - Simple: array-based implementation
 - Fast: $O(1)$ per operation average case
- Analysis is challenging
Equivalence Relation

- Relation R on set S maps pairs of elements of S to true or false
 - For all $a, b \in S$, $(a \ R \ b) \rightarrow \{true, false\}$
- Equivalence relation is a relation R such that the following hold
 - R is reflexive: $(a \ R \ a)$ for all $a \in S$
 - R is symmetric: $(a \ R \ b) \iff (b \ R \ a)$
 - R is transitive: $(a \ R \ b)$ and $(b \ R \ c) \rightarrow (a \ R \ c)$
- Example: Equality over integers
Equivalence Class

- Given set S and equivalence relation R
- Find the subsets S_i of S such that
 - For all $a, b \in S_i$: $(a \; R \; b)$
 - For all $a \in S_i, b \in S_j, i \neq j$: not $(a \; R \; b)$
- These S_i are the equivalence classes of S for relation R
 - The S_i are “disjoint sets”
- Example: $S = \{1,2,3,4,3,3,2,1,3\}$, R is =
Disjoint Sets

- **Main operation**
 - Determine if \(a\) and \(b\) are in the same equivalence class

- **Approach**
 - Put each element of \(S\) in a disjoint set of its own
 - If \(a\) and \(b\) are related, then union the sets containing \(a\) and \(b\)
Disjoint Sets

- Example
 - \(S = \{1_a, 2_a, 3_a, 4_a, 3_b, 3_c, 2_b, 1_b, 3_d\} \)
 - \(DS = \{\{1_a\}, \{2_a\}, \{3_a\}, \{4_a\}, \{3_b\}, \{3_c\}, \{2_b\}, \{1_b\}, \{3_d\}\} \)
 - \(3_a \ R \ 3_b \ ? \), \(3_c \ R \ 3_d \ ? \)
 - \(DS = \{\{1_a\}, \{2_a\}, \{3_a,3_b\}, \{4_a\}, \{3_c,3_d\}, \{2_b\}, \{1_b\}\} \)
 - \(3_a \ R \ 3_c \ ? \)
 - \(DS = \{\{1_a\}, \{2_a\}, \{3_a,3_b,3_c,3_d\}, \{4_a\}, \{2_b\}, \{1_b\}\} \)
Disjoint Sets

- **Operations**
 - **Find(a)**
 - Returns a representative of the equivalence class containing a
 - **Union(S_i,S_j)**
 - Creates a new set \(S_k = S_i \cup S_j \)
 - Associates single representative to all elements of \(S_k \)

- Assume each element can be associated with a unique integer 0 to N-1
Disjoint Sets

Solution #1

- Maintain an array of size N containing the representative of each element
- Find is a $O(1)$ lookup
- Union(a,b)
 - Assuming a in class i and b in class j
 - Scan array, changing all i’s to j’s
 - $O(N)$ per union (how many unions?)
- Okay if $\Omega(N^2)$ find operations
 - $O(1)$ per union/find operation
Disjoint Sets

Solution #2a

- Maintain a linked list for each equivalence class
- Increases time to find an element
- Decreases time for unions by not having to search all N elements
 - Just the two lists where the elements are found
 - And then concatenate lists: $O(\text{size of larger list})$
- Still, $\Theta(N^2)$ performance in worst case
Disjoint Sets

Solution #2b

- Maintain a linked list for each equivalence class
- Also maintain size of each class (list)
- Union always concatenates the smaller to the larger class (list)
- Thus, N-1 unions cost $O(N \log N)$ (why?)
- Any sequence of M finds and N-1 unions takes time $O(M + N \log N)$
Disjoint Sets

- **Performance**
 - Can ensure $O(1)$ worst-case time for find operation
 - Or, can ensure $O(1)$ worst-case time for union operation
 - But not both

- **Solution #3**
 - Fast unions, slow finds
 - But, achieves $O(M+N)$ time for any sequence of M finds and $N-1$ unions
Disjoint Sets

Solution 3

- Represent each set as a tree
- Tree’s root is the representative element for the set
- Disjoint sets are a forest of trees
- Find(a) returns root element of tree containing a
- Union(a,b) points root node of tree containing b to root node of tree containing a
- Implemented as array s, where s[i] = index of parent node in tree (or -1 if root)
Example

Initial disjoint sets of 8 elements (really an array of size 8 of all -1s):

After union(4,5):

![Diagram showing the initial disjoint sets and the result after union(4,5)]
Example (cont.)

After union(6,7):

After union(4,6):

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Implementation

1 class DisjSets
2 {
3 public:
4 explicit DisjSets(int numElements);
5
6 int find(int x) const;
7 int find(int x);
8 void unionSets(int root1, int root2);
9
10 private:
11 vector<int> s;
12 };
Implementation

```cpp
1   /**
2   * Construct the disjoint sets object.
3   * numElements is the initial number of disjoint sets.
4   */
5   DisjSets::DisjSets( int numElements ) : s( numElements )
6   {
7       for( int i = 0; i < s.size(); i++ )
8           s[ i ] = -1;
9   }
```
/**
 * Union two disjoint sets.
 * For simplicity, we assume root1 and root2 are distinct
 * and represent set names.
 * root1 is the root of set 1.
 * root2 is the root of set 2.
 */

void DisjSets::unionSets(int root1, int root2)
{
 s[root2] = root1;
}
Implementation

1 /**
2 * Perform a find.
3 * Error checks omitted again for simplicity.
4 * Return the set containing x.
5 */
6 int DisjSets::find(int x) const
7 {
8 if(s[x] < 0)
9 return x;
10 else
11 return find(s[x]);
12 }
Analysis

- **Find(x)**
 - Proportional to depth of tree containing x
 - Deepest tree?
 - Worst-case running time $O(N)$
 - M consecutive find operations $O(MN)$ worst case

- **Average case analysis**
 - What is the average case?
 - Unions can still cost $O(N^2)$
 - But we can do better...
Smart Union

- Union by size
 - Link smaller tree to larger tree
- Maximum node depth is \((\log_2 N)\) (why?)
- Find(x) running time?
- Sequence of M operations requires \(O(M)\) time
 - Random unions tend to merge large sets with small sets
 - Thus, only increase depth of smaller set
- Implementation
 - Use \((-\text{size})\) instead of \(-1\) for root entries
Smart Union Example
Smart Union by Height

- Keep track of height of each tree, rather than size
- Union: Link smaller-height tree to larger-height tree
- Height only increases when two equal-height trees joined
- Still $O(\log N)$ maximum depth
- Still $O(M)$ time for M operations

Implementation
- Store (negative of height) minus 1
Smart Union by Height

Example

```
-1 -1 -1 4 -3 4 4 6
0 1 2 3 4 5 6 7
```

```
0 1 2 3 4 5 6 7
```

```
0 1 2 3 4 5 6 7
```
/**
 * Union two disjoint sets.
 * For simplicity, we assume root1 and root2 are distinct
 * and represent set names.
 * root1 is the root of set 1.
 * root2 is the root of set 2.
 */

void DisjSets::unionSets(int root1, int root2)
{
 if(s[root2] < s[root1]) // root2 is deeper
 s[root1] = root2; // Make root2 new root
 else
 {
 if(s[root1] == s[root2])
 s[root1]--; // Update height if same
 s[root2] = root1; // Make root1 new root
 }
}
Path Compression

- Smart union achieves $O(M)$ time for M operations (average case)
- But still $O(M \log N)$ in the worst case
- Path compression
 - All nodes accessed during a Find(x) are linked directly to the root
- Path compression without smart union still $O(M \log N)$ worst case
Path Compression Example

After Find(14):

0
 1 2 4 3
 5 6
 8
 9 10
 12
 11
 13
 14
 15
Path Compression Implementation

```cpp
1  /**
2   * Perform a find with path compression.
3   * Error checks omitted again for simplicity.
4   * Return the set containing x.
5   */
6   int DisjSets::find( int x )
7   {
8       if( s[ x ] < 0 )
9           return x;
10      else
11          return s[ x ] = find( s[ x ] );
12   }
```
Path Compression with Smart Union

- Path compression works as is with union-by-size (tree sizes don’t change)
- Path compression with union-by-height requires recomputation of heights
- Solution: Don’t recompute heights
 - Heights become (possibly over) estimates of true height
 - Also called “ranks” and this solution is called “union-by-rank”
 - Ranks are modified far less than sizes, so slightly faster in practice
- Path compression does not change average case time, but does reduce worst-case time
Analysis of Union-by-Rank and Path Compression

- Worst case is $\Theta(M\alpha(M,N))$
 - M is number of operations (find, union)
 - N is number of elements in disjoint set
 - $\alpha(M,N)$ is the inverse of Ackermann’s function

- In practice, $\alpha(M,N) \leq 4$
- Thus, worst case is $\Theta(M)$ for M operations
Ackermann’s Function

\[A(1, j) = 2^j \text{ for } j \geq 1 \]
\[A(i, 1) = A(i - 1, 2) \text{ for } i \geq 2 \]
\[A(i, j) = A(i - 1, A(i, j - 1)) \text{ for } i, j \geq 2 \]

<table>
<thead>
<tr>
<th>A(i,j)</th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
<th>j=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>2^1 = 2</td>
<td>2^2 = 4</td>
<td>2^3 = 8</td>
<td>2^4 = 16</td>
</tr>
<tr>
<td>i=2</td>
<td>2^2 = 4</td>
<td>2^2^2 = 16</td>
<td>2^16 = 65536</td>
<td>2^6^5536</td>
</tr>
<tr>
<td>i=3</td>
<td>2^2^2 = 16</td>
<td>2^16 = 65536</td>
<td>2^{65536}</td>
<td>2^{2^{65536}} = BIG</td>
</tr>
</tbody>
</table>
Inverse of Ackermann’s Function

\[
\alpha(M, N) = \min \{ i \geq 1 \mid A(i, \lfloor M / N \rfloor) > \log N \}
\]

\[
\alpha(M, N) = O(\log^* N)
\]

\[
\log^* N = \log_2 \log_2 \log_2 \cdots \log_2 N \text{ such that result } \leq 1
\]

\[
\log^* 65536 = 4
\]

\[
\log^* 2^{65536} = 5 \text{ (note that } 2^{65536} \text{ is a 20,000 digit number)}
\]
Analysis of Union-by-Rank and Path Compression

- Worst case is $\Theta(M\alpha(M,N))$ for M operations on disjoint set with N elements
 - But, technically not linear in M
- Any sequence of $M = \Omega(N)$ union/find operations takes $O(M \log^* N)$ time
Application: Maze Generation

- Start with walls everywhere
- Randomly choose a wall that separates two disconnected cells
- Continue until start and finish cells connected
- Or, continue until all cells connected
 - More dead ends
Maze Generation Example

Initial state: All walls up, all cells in their own set.

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
5 & 6 & 7 & 8 \\
10 & 11 & 12 & 13 \\
15 & 16 & 17 & 18 \\
20 & 21 & 22 & 23
\end{array}
\]

\{0\} \{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\} \{13\} \{14\} \{15\} \{16\} \{17\} \{18\} \{19\} \{20\} \{21\} \{22\} \{23\} \{24\}
Maze Generation Example

Intermediate state:

```
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
```

\{0, 1\} \{2\} \{3\} \{4, 6, 7, 8, 9, 13, 14\} \{5\} \{10, 11, 15\} \{12\} \{16, 17, 18, 22\} \{19\} \{20\} \{21\} \{23\} \{24\}
Maze Generation Example

After joining 13 and 18 from previous intermediate state:

{0, 1} {2} {3} {4, 6, 7, 8, 9, 13, 14, 16, 17, 18, 22} {5} {10, 11, 15} {12} {19} {20} {21} {23} {24}
Maze Generation Example

Final state: All cells connected.

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}
More Applications

- Finding the connected components of an undirected graph

- Computing shorelines of a terrain

- Molecular identification from fragmentation

- Image processing
 - Movie coloring
Summary

- Disjoint sets data structure provides simple, fast solution to equivalence problems
 - Array-based implementation
 - Average case $O(1)$ time per operation
- Despite simplicity, analysis is challenging
- Numerous applications