Graph Algorithms: Applications

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Applications

- Depth-first search
- Biconnectivity
- Euler circuits
- Strongly-connected components
Depth-First Search

- Recursively visit every vertex in the graph
- Considers every edge in the graph
 - Assumes undirected edge (u,v) is in u’s and v’s adjacency list
- Visited flag prevents infinite loops
- Running time $O(|V|+|E|)$

```
DFS() // graph G=(V,E)
    foreach v in V
        if (! v.visited)
            then Visit(v)

Visit(vertex v)
    v.visited = true
    foreach w adjacent to v
        if (! w.visited)
            then Visit(w)
```
DFS Applications

- Undirected graph
 - Test if graph is connected
 - Run DFS from any vertex and then check if any vertices not visited
 - Depth-first spanning tree
 - Add edge \((v,w)\) to spanning tree if \(w\) not yet visited (minimum spanning tree?)
 - If graph not connected, then depth-first spanning forest
DFS Applications

- Remembering the DFS traversal order is important for many applications.
- Let the edges \((v,w)\) added to the DF spanning tree be directed.
- Add a directed back edge (dashed) if:
 - \(w\) is already visited when considering edge \((v,w)\), and
 - \(v\) is already visited when considering reverse edge \((w,v)\).
Biconnectivity

- A connected, undirected graph is **biconnected** if the graph is still connected after removing any one vertex
 - I.e., when a "node" fails, there is always an alternative route
- If a graph is not biconnected, the disconnecting vertices are called **articulation points**
 - Critical points of interest in many applications
DFS Applications: Finding Articulation Points

- From any vertex v, perform DFS and number vertices as they are visited
 - $\text{Num}(v)$ is the visit number
- Let $\text{Low}(v) =$ lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - $\text{Low}(v) =$ minimum of
 - $\text{Num}(v)$
 - Lowest $\text{Num}(w)$ among all back edges (v,w)
 - Lowest $\text{Low}(w)$ among all tree edges (v,w)
- Can compute $\text{Num}(v)$ and $\text{Low}(v)$ in $O(|E|+|V|)$ time
DFS Applications: Finding Articulation Points (Example)

Original Graph

Depth-first tree starting at A with Num/Low values:
DFS Applications: Finding Articulation Points

- Root is articulation point iff it has more than one child.
- Any other vertex v is an articulation point iff v has some child w such that $\text{Low}(w) \geq \text{Num}(v)$
 - I.e., is there a child w of v that cannot reach a vertex visited before v?
 - If yes, then removing v will disconnect w (and v is an articulation point).
DFS Applications: Finding Articulation Points (Example)

Original Graph

Depth-first tree starting at C with Num/Low values:
DFS Applications: Finding Articulation Points

- High-level algorithm
 - Perform pre-order traversal to compute Num
 - Perform post-order traversal to compute Low
 - Perform another post-order traversal to detect articulation points

- Last two post-order traversals can be combined

- In fact, all three traversals can be combined in one recursive algorithm
/**
 * Assign num and compute parents.
 */
void Graph::assignNum(Vertex v)
{
 v.num = counter++;
 v.visited = true;
 for each Vertex w adjacent to v
 if(!w.visited)
 {
 w.parent = v;
 assignNum(w);
 }
}
/**
 * Assign low; also check for articulation points.
 */
void Graph::assignLow(Vertex v)
{
 v.low = v.num; // Rule 1
 for each Vertex w adjacent to v
 {
 if(w.num > v.num) // Forward edge
 {
 assignLow(w);
 if(w.low >= v.num)
 {
 cout << v << " is an articulation point" << endl;
 v.low = min(v.low, w.low); // Rule 3
 }
 }
 else
 {
 if(v.parent != w) // Back edge
 v.low = min(v.low, w.num); // Rule 2
 }
 }
}
void Graph::findArt(Vertex v)
{
 v.visited = true;
 v.low = v.num = counter++; // Rule 1
 for each Vertex w adjacent to v
 {
 if(!w.visited) // Forward edge
 {
 w.parent = v;
 findArt(w);
 if(w.low >= v.num)
 cout << v << " is an articulation point" << endl;
 v.low = min(v.low, w.low); // Rule 3
 }
 }
 else
 { // Back edge
 if(v.parent != w)
 v.low = min(v.low, w.num); // Rule 2
 }
}
Euler Circuits

- Puzzle challenge
 - Can you draw a figure using a pen, drawing each line exactly once, without lifting the pen from the paper?
 - And, can you finish where you started?
Euler Circuits

- Seven Bridges of Königsberg
- Solved by Leonhard Euler in 1736 using a graph approach (DFS)
- Also called an “Euler path” or “Euler tour”
- Marked the beginning of graph theory
Euler Circuit Problem

- Assign a vertex to each intersection in the drawing
- Add an undirected edge for each line segment in the drawing
- Find a path in the graph that traverses each edge exactly once, and stops where it started
Euler Circuit Problem

- Necessary and sufficient conditions
 - Graph must be connected
 - Each vertex must have an even degree
- Graph with two odd-degree vertices can have an Euler tour (not circuit)
- Any other graph has no Euler tour or circuit
Euler Circuit Problem

Algorithm

- Perform DFS from some vertex v until you return to v along path p
- If some part of graph not included, perform DFS from first vertex v' on p that has an un-traversed edge (path p')
- Splice p' into p
- Continue until all edges traversed
Euler Circuit Example

Start at vertex 5.
Suppose DFS visits 5, 4, 10, 5.
Euler Circuit Example (cont.)

Graph remaining after 5, 4, 10, 5:

Start at vertex 4.
Suppose DFS visits 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4.
Splicing into previous path: 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.
Euler Circuit Example (cont.)

Graph remaining after 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5:

Start at vertex 3.
Suppose DFS visits 3, 2, 8, 9, 6, 3.
Splicing into previous path: 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.
Start at vertex 9.
Suppose DFS visits 9, 12, 10, 9.
Splicing into previous path: 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.
No more un-traversed edges, so above path is an Euler circuit.
Euler Circuit Algorithm

- Implementation details
 - Maintain circuit as a linked list to support O(1) splicing
 - Maintain index on adjacency lists to avoid repeated searches for un-traversed edges

- Analysis
 - Each edge considered only once
 - Running time is $O(|E|+|V|)$
DFS on Directed Graphs

- Same algorithm
- Graph may be connected, but not strongly connected
- Still want the DF spanning forest to retain information about the search

DFS () // graph G=(V,E)
 foreach v in V
 if (! v.visited)
 then Visit (v)

Visit (vertex v)
 v.visited = true
 foreach w adjacent to v
 if (! w.visited)
 then Visit (w)
DF Spanning Forest

- Three types of edges in DF spanning forest
 - Back edges linking a vertex to an ancestor
 - Forward edges linking a vertex to a descendant
 - Cross edges linking two unrelated vertices

Graph: DF Spanning Forest:
DF Spanning Forest

(Note: DF Spanning Forests usually drawn with children and new trees added from left to right.)
DFS on Directed Graphs

- Applications
 - Test if directed graph is acyclic
 - Has no back edges
 - Topological sort
 - Reverse post-order traversal of DF spanning forest
Strongly-Connected Components

- A graph is strongly connected if every vertex can be reached from every other vertex.
- A strongly-connected component of a graph is a subgraph that is strongly connected.
- Would like to detect if a graph is strongly connected.
- Would like to identify strongly-connected components of a graph.
- Can be used to identify weaknesses in a network.
- General approach: Perform two DFSs.
Strongly-Connected Components

Algorithm

- Perform DFS on graph G
 - Number vertices according to a post-order traversal of the DF spanning forest
- Construct graph G_r by reversing all edges in G
- Perform DFS on G_r
 - Always start a new DFS (initial call to Visit) at the highest-numbered vertex
- Each tree in resulting DF spanning forest is a strongly-connected component
Strongly-Connected Components

Graph G

Graph G_r

DF Spanning Forest of G_r

Strongly-connected components:

$\{G\}, \{H,I,J\}, \{B,A,C,F\}, \{D\}, \{E\}$
Strongly-Connected Components: Analysis

- Correctness
 - If v and w are in a strongly-connected component
 - Then there is a path from v to w and a path from w to v
 - Therefore, there will also be a path between v and w in G and G_r

- Running time
 - Two executions of DFS
 - \(O(|E|+|V|)\)
Summary

- Graph is one of the most important data structures
- Studied for centuries
- Numerous applications
- Some of the hardest problems to solve are graph problems
 - E.g., Hamiltonian (simple) cycle, Clique