Graph Algorithms

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Graphs

Protein-protein Interaction

Social Network

Power Grid

Internet

Web
Some Graph Statistics

- **Web**
 - 10B pages, 1T hyperlinks
 - Topology storage: 10TB
 - Google PageRank: Eigenvector on 10Bx10B adjacency matrix (sparse)

- **MySpace**
 - 100M users, 10B friendship links
 - Clique/community detection
 - 300K new users per day
Graph Problems

- Degree
- Diameter
- Centrality
- Shortest path
- Cycles/tours
- Minimum spanning tree
- Traversals/search
- Connectivity

- Clustering
- Partitioning
- Cliques
- Motifs
- Subgraph isomorphism
- Frequent subgraphs
- Pattern learning
- Dynamics
Definitions

- Graph $G = (V, E)$ consists of vertices V and edges E
- $E = \{(u, v) \mid u, v \in V\}$
 - v is adjacent to u
- E.g.,
 - $V = \{A, B, C, D, E, F, G\}$
 - $E = \{(A, B), (A, D), (B, C), (C, D), (C, G), (D, E), (D, F), (E, F)\}$
Definitions

- **Undirected graph**
 - Edges are unordered

- **Directed graph**
 - Edges are ordered

- **Weighted graph**
 - Edges have a weight $w(u,v)$ or cost $c(u,v)$
Definitions

- **Degree of a vertex**
 - Number of edges incident on a vertex

- **Indegree**
 - Number of directed edges to vertex

- **Outdegree**
 - Number of directed edges from vertex

![Diagram of a graph with vertices v1 to v7 and their degrees]

- $\text{degree}(v_4) = 6$
- $\text{indegree}(v_4) = 3$
- $\text{outdegree}(v_4) = 3$

- $\text{indegree}(v_1) = 0$
- $\text{outdegree}(v_1) = 3$

- $\text{indegree}(v_6) = 3$
- $\text{outdegree}(v_6) = 0$
Definitions

- **Path**
 - Sequence of vertices v_1, v_2, \ldots, v_N such that $(v_i, v_{i+1}) \in E$ for $1 \leq i < N$
 - Path **length** is number of edges on path $(N-1)$
 - **Simple** path has unique intermediate vertices

- **Cycle**
 - Path where $v_1 = v_N$
 - Usually simple and directed
 - **Acyclic** graphs have no cycles
Definitions

- Undirected graph is connected if there is a path between every pair of vertices.
- Connected, directed graph is called strongly connected.
- Complete graph has an edge between every pair of vertices.
Representation

Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(|V^2|\)

Adjacency List

\(|V| + |E|\)
Topological Sort

Order vertices in a directed, acyclic graph such that if \((u,v) \in E\), then \(u\) before \(v\) in the ordering.

Topological order:
\[v_1, v_2, v_5, v_4, v_3, v_7, v_6\]
Topological Sort

- **Solution #1**
 - While vertices left in graph \(\mathcal{O}(|V|) \)
 - Find vertex \(v \) with indegree = 0 \(\mathcal{O}(|V|) \)
 - Output \(v \)
 - Remove edges to/from \(v \)
 - \(T(V,E) = \mathcal{O}(|V|^2) \)

Topological order:
\(v_1, v_2, v_5, v_4, v_3, v_7, v_6 \)
Topological Sort

- Solution #2
 - Don’t need to search all vertices for indegree = 0
 - Only vertices who lost an edge from the previous vertex’s removal
 - \(T(V,E) = O(|V| + |E|) \)
 - Note: \(|E| = O(|V|^2) \)

Topological order:

\[v1, v2, v5, v4, v3, v7, v6 \]
void Graph::topsort()
{
 Queue<Vertex> q;
 int counter = 0;

 q.makeEmpty();
 for each Vertex v
 if(v.indegree == 0)
 q.enqueue(v);

 while(!q.isEmpty())
 {
 Vertex v = q.dequeue();
 v.topNum = ++counter; // Assign next number

 for each Vertex w adjacent to v
 if(--w.indegree == 0)
 q.enqueue(w);

 }

 if(counter != NUM_VERTICES)
 throw CycleFoundException();
}
Topological Sort

<table>
<thead>
<tr>
<th>Vertex</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Enqueue
- v_1
- v_2
- v_5
- v_4
- v_3, v_7
- v_6

Dequeue
- v_1
- v_2
- v_5
- v_4
- v_3
- v_7
- v_6
Graph Algorithms

- Topological Sort
- Shortest paths
- Network flow
- Minimum spanning tree
- Applications
- NP-Completeness