Overview

- **Hashing**
 - Technique supporting insertion, deletion and search in average-case constant time
 - Operations requiring elements to be sorted (e.g., FindMin) are not efficiently supported

- **Hash table ADT**
 - Implementations
 - Analysis
 - Applications
Hash Table

- One approach
 - Hash table is an array of fixed size TableSize
 - Array elements indexed by a key, which is mapped to an array index (0...TableSize-1)
 - Mapping (hash function) h from key to index
 - E.g., $h(“john”) = 3$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>john 25000</td>
<td></td>
<td></td>
<td>phil 31250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dave 27500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mary 28200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hash Table

- **Insert**
 - $T[h(“john“)] = <“john“, 25000>

- **Delete**
 - $T[h(“john“)] = NULL$

- **Search**
 - Return $T[h(“john“)]$

- **What if $h(“john“) = h(“joe“) ?**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>john</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>phil</td>
<td>31250</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>dave</td>
<td>27500</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>mary</td>
<td>28200</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hash Function

- Mapping from key to array index is called a **hash function**
 - Typically, many-to-one mapping
 - Different keys map to different indices
 - Distributes keys evenly over table
- **Collision** occurs when hash function maps two keys to same array index
Hash Function

- Simple hash function
 - \(h(\text{Key}) = \text{Key} \mod \text{TableSize} \)
 - Assumes integer keys
- For random keys, \(h() \) distributes keys evenly over table
- What if TableSize = 100 and keys are multiples of 10?
- Better if TableSize is a prime number
 - Not too close to powers of 2 or 10
Hash Function for String Keys

- **Approach 1**
 - Add up character ASCII values (0-127) to produce integer keys
 - Small strings may not use all of table
 - Strlen(S) * 127 < TableSize

- **Approach 2**
 - Treat first 3 characters of string as base-27 integer (26 letters plus space)
 - Key = S[0] + (27 * S[1]) + (27^2 * S[2])
 - Assumes first 3 characters randomly distributed
 - Not true of English
Hash Function for String Keys

- **Approach 3**
 - Use all \(N \) characters of string as an \(N \)-digit base-\(K \) integer
 - Choose \(K \) to be prime number larger than number of different digits (characters)
 - I.e., \(K = 29, 31, 37 \)
 - If \(L = \) length of string \(S \), then
 \[
 h(S) = \left[\sum_{i=0}^{L-1} S[L-i-1] \times 37^i \right] \mod TableSize
 \]
 - Use Horner’s rule to compute \(h(S) \)
 - Limit \(L \) for long strings

```c
/*
 * A hash routine for string objects.
 */
int hash( const string & key, int tableSize )
{
    int hashVal = 0;
    for( int i = 0; i < key.length(); i++ )
        hashVal = 37 * hashVal + key[ i ];
    hashVal %= tableSize;
    if( hashVal < 0 )
        hashVal += tableSize;
    return hashVal;
}
```
Collision Resolution

- What happens when \(h(k_1) = h(k_2) \)?

- Collision resolution strategies
 - Chaining
 - Store colliding keys in a linked list
 - Open addressing
 - Store colliding keys elsewhere in the table
Collision Resolution by Chaining

- Hash table T is a vector of lists
 - Only singly-linked lists needed if memory is tight
- Key k is stored in list at $T[h(k)]$
- E.g., TableSize = 10
 - $h(k) = k \mod 10$
 - Insert first 10 perfect squares

```
0 1 2 3 4 5 6 7 8 9
0  1  81  64  25  36  49
   4  16  9
```
Implementation of Chaining Hash Table

```
1 template <typename HashedObj>
2 class HashTable
3 {
4     public:
5         explicit HashTable( int size = 101 );
6
7         bool contains( const HashedObj & x ) const;
8
9         void makeEmpty();
10        void insert( const HashedObj & x );
11        void remove( const HashedObj & x );
12
13     private:
14         vector<list<HashedObj> > theLists; // The array of Lists
15         int currentSize;
16
17         void rehash();
18         int myhash( const HashedObj & x ) const;
19     };
20
21        int hash( const string & key );
22        int hash( int key );
```
Implementation of Chaining Hash Table

```cpp
int myhash( const HashedObj & x ) const {
    int hashVal = hash( x );
    hashVal %= theLists.size();
    if( hashVal < 0 )
        hashVal += theLists.size();
    return hashVal;
}
```
Each of these operations takes time linear in the length of the list.

```cpp
void makeEmpty()
{
    for( int i = 0; i < theLists.size(); i++ )
        theLists[i].clear();
}

bool contains( const HashedObj & x ) const
{
    const list<HashedObj> & whichList = theLists[ myhash( x ) ];
    return find( whichList.begin(), whichList.end(), x ) != whichList.end();
}

bool remove( const HashedObj & x )
{
    list<HashedObj> & whichList = theLists[ myhash( x ) ];
    list<HashedObj>::iterator itr = find( whichList.begin(), whichList.end(), x );
    if( itr == whichList.end() )
        return false;
    whichList.erase( itr );
    --currentSize;
    return true;
}
bool insert( const HashedObj & x )
{
    list<HashedObj> & whichList = theLists[ myhash( x ) ];
    if( find( whichList.begin( ), whichList.end( ), x ) != whichList.end( ) )
        return false;
    whichList.push_back( x );

    // Rehash; see Section 5.5
    if( ++currentSize > theLists.size( ) )
        rehash( );

    return true;
}
// Example of an Employee class
class Employee {
    public:
        const string & getName() const
        { return name; }

        bool operator==( const Employee & rhs ) const
        { return getName() == rhs.getName(); }

        bool operator!=( const Employee & rhs ) const
        { return !( *this == rhs ); }

    // Additional public members not shown

    private:
        string name;
        double salary;
        int seniority;

    // Additional private members not shown
};

int hash( const Employee & item )
{ return hash( item.getName() ); }
Collision Resolution by Chaining: Analysis

- **Load factor** $\lambda$ of a hash table $T$
  - $N =$ number of elements in $T$
  - $M =$ size of $T$
  - $\lambda = N/M$
- Average length of a chain is $\lambda$
- Unsuccessful search $O(\lambda)$
- Successful search $O(\lambda/2)$
- Ideally, want $\lambda \approx 1$ (not a function of $N$)
  - I.e., TableSize = number of elements you expect to store in the table
Collision Resolution by Open Addressing

- When a collision occurs, look elsewhere in the table for an empty slot

- Advantages over chaining
  - No need for addition list structures
  - No need to allocate/deallocate memory during insertion/deletion (slow)

- Disadvantages
  - Slower insertion – May need several attempts to find an empty slot
  - Table needs to be bigger (than chaining-based table) to achieve average-case constant-time performance
    - Load factor $\lambda \approx 0.5$
Collision Resolution by Open Addressing

- Probe sequence
  - Sequence of slots in hash table to search
  - \( h_0(x), h_1(x), h_2(x), \ldots \)
  - Needs to visit each slot exactly once
  - Needs to be repeatable (so we can find/delete what we’ve inserted)

- Hash function
  - \( h_i(x) = (h(x) + f(i)) \mod \text{TableSize} \)
  - \( f(0) = 0 \)
Linear Probing

- \( f(i) \) is a linear function of \( i \)
  - E.g., \( f(i) = i \)
- Example: \( h(x) = x \mod \text{TableSize} \)
  - \( h_0(89) = (h(89)+f(0)) \mod 10 = 9 \)
  - \( h_0(18) = (h(18)+f(0)) \mod 10 = 8 \)
  - \( h_0(49) = (h(49)+f(0)) \mod 10 = 9 \) (X)
  - \( h_1(49) = (h(49)+f(1)) \mod 10 = 0 \)
## Linear Probing Example

<table>
<thead>
<tr>
<th>Empty Table</th>
<th>After 89</th>
<th>After 18</th>
<th>After 49</th>
<th>After 58</th>
<th>After 69</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>
Linear Probing: Analysis

- Probe sequences can get long
- Primary clustering
  - Keys tend to cluster in one part of table
  - Keys that hash into cluster will be added to the end of the cluster (making it even bigger)
Linear Probing: Analysis

- Expected number of probes for insertion or unsuccessful search
  \[ \frac{1}{2} \left( 1 + \frac{1}{(1 - \lambda)^2} \right) \]

- Expected number of probes for successful search
  \[ \frac{1}{2} \left( 1 + \frac{1}{1 - \lambda} \right) \]

- Example (\( \lambda = 0.5 \))
  - Insert / unsuccessful search
    - 2.5 probes
  - Successful search
    - 1.5 probes

- Example (\( \lambda = 0.9 \))
  - Insert / unsuccessful search
    - 50.5 probes
  - Successful search
    - 5.5 probes
Random Probing: Analysis

- Random probing does not suffer from clustering
- Expected number of probes for insertion or unsuccessful search:
  \[ \frac{1}{\lambda} \ln \frac{1}{1 - \lambda} \]
- Example
  - \( \lambda = 0.5 \): 1.4 probes
  - \( \lambda = 0.9 \): 2.6 probes
Linear vs. Random Probing

Load factor $\lambda$

# probes

- Linear probing
- Random probing

Graph showing the comparison between Linear and Random probing across different load factors $\lambda$. The graph illustrates the number of probes required as the load factor increases.
Quadratic Probing

- Avoids primary clustering
- \( f(i) \) is quadratic in \( i \)
  - E.g., \( f(i) = i^2 \)
- Example
  - \( h_0(58) = (h(58)+f(0)) \mod 10 = 8 \) (X)
  - \( h_1(58) = (h(58)+f(1)) \mod 10 = 9 \) (X)
  - \( h_2(58) = (h(58)+f(2)) \mod 10 = 2 \)
## Quadratic Probing Example

<table>
<thead>
<tr>
<th>Empty Table</th>
<th>After 89</th>
<th>After 18</th>
<th>After 49</th>
<th>After 58</th>
<th>After 69</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>
Quadratic Probing: Analysis

- Difficult to analyze
- Theorem 5.1
  - New element can always be inserted into a table that is at least half empty and TableSize is prime
- Otherwise, may never find an empty slot, even if one exists
- Ensure table never gets half full
  - If close, then expand it
Quadratic Probing

- Only $M$ (TableSize) different probe sequences
  - May cause “secondary clustering”

- Deletion
  - Emptying slots can break probe sequence
  - Lazy deletion
    - Differentiate between empty and deleted slot
    - Skip deleted slots
    - Slows operations (effectively increases $\lambda$)
Quadratic Probing: Implementation

```cpp
1 template <typename HashedObj>
2 class HashTable
3 {
4 public:
5 explicit HashTable(int size = 101);
6
7 bool contains(const HashedObj & x) const;
8
9 void makeEmpty();
10 bool insert(const HashedObj & x);
11 bool remove(const HashedObj & x);
12```
Quadratic Probing:
Implementation

```
enum EntryType { ACTIVE, EMPTY, DELETED };

private:
    struct HashEntry
    {
        HashedObj element;
        EntryType info;

        HashEntry( const HashedObj & e = HashedObj( ), EntryType i = EMPTY )
            : element( e ), info( i ) {} }

    vector<HashEntry> array;
    int currentSize;

    bool isActive( int currentPos ) const;
    int findPos( const HashedObj & x ) const;
    void rehash( );
    int myhash( const HashedObj & x ) const;
};
```
Quadratic Probing: Implementation

```cpp
1 explicit HashTable( int size = 101 ) : array( nextPrime( size ) )
2     { makeEmpty( ); }
3
4 void makeEmpty( )
5 {
6     currentSize = 0;
7     for( int i = 0; i < array.size( ); i++ )
8         array[ i ].info = EMPTY;
9 }
```

Ensure table size is prime
Quadratic Probing: Implementation

```cpp
bool contains( const HashedObj & x ) const
    { return isActive( findPos( x ) ); } 

int findPos( const HashedObj & x ) const
    { 
        int offset = 1;
        int currentPos = myhash( x );

        while( array[ currentPos ].info != EMPTY &&
            array[ currentPos ].element != x )
            { 
                currentPos += offset; // Compute ith probe
                offset += 2;
                if( currentPos >= array.size( ) )
                    currentPos -= array.size( );
            }

        return currentPos;
    } 

bool isActive( int currentPos ) const
    { return array[ currentPos ].info == ACTIVE; }
```
Quadratic Probing: Implementation

```c
bool insert( const HashedObj & x )
{
    // Insert x as active
    int currentPos = findPos( x );
    if( isActive( currentPos ) )
        return false;

    array[ currentPos ] = HashEntry( x, ACTIVE );

    // Rehash; see Section 5.5
    if( ++currentSize > array.size( ) / 2 )
        rehash( );

    return true;
}

bool remove( const HashedObj & x )
{
    int currentPos = findPos( x );
    if( !isActive( currentPos ) )
        return false;

    array[ currentPos ].info = DELETED;
    return true;
}
```
Double Hashing

- Combine two different hash functions
- \(f(i) = i \times h_2(x) \)
- Good choices for \(h_2(x) \)?
 - Should never evaluate to 0
 - \(h_2(x) = R - (x \mod R) \)
 - \(R \) is prime number less than TableSize

- Previous example with \(R=7 \)
 - \(h_0(49) = (h(49)+f(0)) \mod 10 = 9 \) (X)
 - \(h_1(49) = (h(49)+(7 - 49 \mod 7)) \mod 10 = 6 \)
Double Hashing Example

<table>
<thead>
<tr>
<th>Empty Table</th>
<th>After 89</th>
<th>After 18</th>
<th>After 49</th>
<th>After 58</th>
<th>After 69</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>
Double Hashing: Analysis

- Imperative that TableSize is prime
 - E.g., insert 23 into previous table
- Empirical tests show double hashing close to random hashing
- Extra hash function takes extra time to compute
Rehashing

- Increase the size of the hash table when load factor too high
- Typically expand the table to twice its size (but still prime)
- Reinsert existing elements into new hash table
Rehashing Example

$h(x) = x \text{ mod } 7$
$\lambda = 0.57$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>15</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Insert 23
$\lambda = 0.71$

$h(x) = x \text{ mod } 17$
$\lambda = 0.29$

Rehashing

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>15</td>
<td>23</td>
<td>24</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Rehashing Analysis

- Rehashing takes $O(N)$ time
- But happens infrequently
- Specifically
 - Must have been $N/2$ insertions since last rehash
 - Amortizing the $O(N)$ cost over the $N/2$ prior insertions yields only constant additional time per insertion
Rehashing Implementation

- When to rehash
 - When table is half full ($\lambda = 0.5$)
 - When an insertion fails
 - When load factor reaches some threshold
- Works for chaining and open addressing
Rehashing for Chaining

```cpp
/**
 * Rehashing for separate chaining hash table.
 */

void rehash() {
    vector<list<HashedObj> > oldLists = theLists;

    // Create new double-sized, empty table
    theLists.resize( nextPrime( 2 * theLists.size( ) ) );
    for( int j = 0; j < theLists.size( ); j++ )
        theLists[ j ].clear( );

    // Copy table over
    currentSize = 0;
    for( int i = 0; i < oldLists.size( ); i++ )
        { list<HashedObj>::iterator itr = oldLists[ i ].begin( );
          while( itr != oldLists[ i ].end( ) )
            insert( *itr++ );
        }
```

```
Rehashing for Quadratic Probing

```cpp
/**
 * Rehashing for quadratic probing hash table.
 */

void rehash()
{
 vector<HashEntry> oldArray = array;

 // Create new double-sized, empty table
 array.resize(nextPrime(2 * oldArray.size()));
 for(int j = 0; j < array.size(); j++)
 array[j].info = EMPTY;

 // Copy table over
 currentSize = 0;
 for(int i = 0; i < oldArray.size(); i++)
 if(oldArray[i].info == ACTIVE)
 insert(oldArray[i].element);
}
```
Hash Tables in C++ STL

- Hash tables not part of the C++ Standard Library
- Some implementations of STL have hash tables (e.g., SGI’s STL)
  - `hash_set`
  - `hash_map`
Hash Set in SGI’s STL

```
#include <hash_set>

struct eqstr
{
 bool operator()(const char* s1, const char* s2) const
 {
 return strcmp(s1, s2) == 0;
 }
};

void lookup(const hash_set<const char*, hash<const char*>, eqstr>& Set,
 const char* word)
{
 hash_set<const char*, hash<const char*>, eqstr>::const_iterator it
 = Set.find(word);
 cout << word << ": "
 << (it != Set.end() ? "present" : "not present")
 << endl;
}

int main()
{
 hash_set<const char*, hash<const char*>, eqstr> Set;
 Set.insert("kiwi");
 lookup(Set, "kiwi");
}
```
Hash Map in SGI’s STL

```cpp
#include <hash_map>

struct eqstr
{
 bool operator() (const char* s1, const char* s2) const
 {
 return strcmp(s1, s2) == 0;
 }
};

int main()
{
 hash_map<const char*, int, hash<const char*>, eqstr> months;
 months["january"] = 31;
 months["february"] = 28;
 ...
 months["december"] = 31;
 cout << "January -> " << months["january"] << endl;
}```
Problem with Large Tables

- What if hash table is too large to store in main memory?
- Solution: Store hash table on disk
 - Minimize disk accesses
- But...
 - Collisions require disk accesses
 - Rehashing requires a lot of disk accesses
Extendible Hashing

- Store hash table in a depth-1 tree
 - Every search takes 2 disk accesses
 - Insertions require few disk accesses
- Hash the keys to a long integer ("extendible")
- Use first few bits of extended keys as the keys in the root node ("directory")
- Leaf nodes contain all extended keys starting with the bits in the associated root node key
Extendible Hashing Example

- Extendible hash table
- Contains $N = 12$ data elements
- First $D = 2$ bits of key used by root node keys
 - 2^D entries in directory
- Each leaf contains up to $M = 4$ data elements
 - As determined by disk page size
- Each leaf stores number of common starting bits (d_L)
Extendible Hashing Example

After inserting 100100

Directory split and rewritten

- Leaves not involved in split now pointed to by two adjacent directory entries. These leaves are not accessed.
Extendible Hashing Example

After inserting 000000
One leaf splits
Only two pointer changes in directory
Extendible Hashing Analysis

- Expected number of leaves is
 \((N/M) \times \log_2 e = (N/M) \times 1.44\)
- Average leaf is (\(\ln 2\)) = 0.69 full
 - Same as for B-trees
- Expected size of directory is
 \(O(N^{(1+1/M)}/M)\)
 - \(O(N/M)\) for large \(M\) (elements per leaf)
Hash Table Applications

- Maintaining symbol table in compilers
- Accessing tree or graph nodes by name
 - E.g., city names in Google maps
- Maintaining a transposition table in games
 - Remember previous game situations and the move taken (avoid re-computation)
- Dictionary lookups
 - Spelling checkers
 - Natural language understanding (word sense)
Summary

- Hash tables support fast insert and search
 - O(1) average case performance
 - Deletion possible, but degrades performance
- Not good if need to maintain ordering over elements
- Many applications