Priority Queues (Heaps)

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Motivation

- Queues are a standard mechanism for ordering tasks on a first-come, first-served basis.
- However, some tasks may be more important or timely than others (higher priority).
- **Priority queues**
 - Store tasks using a partial ordering based on priority.
 - Ensure highest priority task at head of queue.
- **Heaps** are the underlying data structure of priority queues.
Priority Queues

- Main operations
 - `insert` (i.e., enqueue)
 - `deleteMin` (i.e., dequeue)
 - Finds the minimum element in the queue, deletes it from the queue, and returns it

- Performance
 - Goal is for operations to be fast
 - Will be able to achieve $O(\log_2 N)$ time insert/deleteMin amortized over multiple operations
 - Will be able to achieve $O(1)$ time insert amortized over multiple insertions
Simple Implementations

- **Unordered list**
 - O(1) insert
 - O(N) deleteMin

- **Ordered list**
 - O(N) insert
 - O(1) deleteMin

- **Balanced BST**
 - O(\(\log_2 N\)) insert and deleteMin

- **Observation**: We don’t need to keep the priority queue completely ordered
A binary heap is a binary tree with two properties

Structure property

- A binary heap is a complete binary tree
 - Each level is completely filled
 - Bottom level may be partially filled from left to right

Height of a complete binary tree with N elements is $\lfloor \log_2 N \rfloor$
Binary Heap Example
Binary Heap

- Heap-order property
 - For every node X, $\text{key}(\text{parent}(X)) \leq \text{key}(X)$
 - Except root node, which has no parent
- Thus, minimum key always at root
 - Or, maximum, if you choose
- Insert and deleteMin must maintain heap-order property
Implementing Complete Binary Trees as Arrays

- Given element at position i in the array
 - i’s left child is at position 2i
 - i’s right child is at position 2i+1
 - i’s parent is at position \(\lfloor i/2 \rfloor \)
template <typename Comparable>
class BinaryHeap
{
 public:
 explicit BinaryHeap(int capacity = 100);
 explicit BinaryHeap(const vector<Comparable> & items);

 bool isEmpty() const;
 const Comparable & findMin() const;

 void insert(const Comparable & x);
 void deleteMin();
 void deleteMin(Comparable & minItem);
 void makeEmpty();

 private:
 int currentSize; // Number of elements in heap
 vector<Comparable> array; // The heap array

 void buildHeap();
 void percolateDown(int hole);
};
Heap Insert

- Insert new element into the heap at the next available slot ("hole")
 - According to maintaining a complete binary tree
- Then, "percolate" the element up the heap while heap-order property not satisfied
Heap Insert: Example

Insert 14:
Heap Insert: Implementation

```cpp
/**
 * Insert item x, allowing duplicates.
 */

void insert( const Comparable & x )
{
    if( currentSize == array.size() - 1 )
        array.resize( array.size() * 2 );

    // Percolate up
    int hole = ++currentSize;
    for( ; hole > 1 && x < array[ hole / 2 ]; hole /= 2 )
        array[ hole ] = array[ hole / 2 ];
    array[ hole ] = x;
}
```
Heap DeleteMin

- Minimum element is always at the root
- Heap decreases by one in size
- Move last element into hole at root
- Percolate down while heap-order property not satisfied
Heap DeleteMin: Example

14
Heap DeleteMin: Example
Heap DeleteMin: Example
Heap DeleteMin: Implementation

```c
/**
 * Remove the minimum item.
 * Throws UnderflowException if empty.
 */
void deleteMin()
{
    if( isEmpty() )
        throw UnderflowException();

    array[1] = array[ currentSize-- ];
    percolateDown( 1 );
}

/**
 * Remove the minimum item and place it in minItem.
 * Throws UnderflowException if empty.
 */
void deleteMin( Comparable & minItem )
{
    if( isEmpty() )
        throw UnderflowException();

    minItem = array[1];
    array[1] = array[ currentSize-- ];
    percolateDown( 1 );
}
```
Heap DeleteMin: Implementation

```java
/**
 * Internal method to percolate down in the heap.
 * hole is the index at which the percolate begins.
 */
void percolateDown( int hole )
{
    int child;
    Comparable tmp = array[ hole ];

    for( ; hole * 2 <= currentSize; hole = child )
    {
        child = hole * 2;
        if( child != currentSize && array[ child + 1 ] < array[ child ] )
            child++;
        if( array[ child ] < tmp )
            array[ hole ] = array[ child ];
        else
            break;
    }
    array[ hole ] = tmp;
}
```
Other Heap Operations

- **decreaseKey**(p, v)
 - Lowers value of item p to v
 - Need to percolate up
 - E.g., change job priority

- **increaseKey**(p, v)
 - Increases value of item p to v
 - Need to percolate down

- **remove**(p)
 - First, **decreaseKey**(p, -∞)
 - Then, **deleteMin**
 - E.g., terminate job
Building a Heap

- Construct heap from initial set of N items
- Solution 1
 - Perform N inserts
 - \(O(N)\) average case, but \(O(N \log_2 N)\) worst-case
- Solution 2
 - Assume initial set is a heap
 - Perform a percolate-down from each internal node (\(H[\text{size}/2]\) to \(H[1]\))
BuildHeap Example

Leaves are all valid heaps
BuildHeap Example
BuildHeap Example

```
150
  /  \\
80   40
  /  \\
20   10
  /  \\
100  60
     /    \
    30  90
```

```
150
  /  \\
80   40
  /  \\
20   10
  /  \\
50   110
    /    \
   140   130
```

```
BuildHeap Example
BuildHeap Implementation

```cpp
explicit BinaryHeap(const vector<Comparable> & items)
 : array(items.size() + 10), currentSize(items.size())
{
 for(int i = 0; i < items.size(); i++)
 array[i + 1] = items[i];
 buildHeap();
}

/**
 * Establish heap order property from an arbitrary
 * arrangement of items. Runs in linear time.
 */
void buildHeap()
{
 for(int i = currentSize / 2; i > 0; i--)
 percolateDown(i);
}
BuildHeap Analysis

- Running time of buildHeap proportional to sum of the heights of the nodes

Theorem 6.1

- For the perfect binary tree of height h containing $2^{h+1} - 1$ nodes, the sum of heights of the nodes is $2^{h+1} - 1 - (h + 1)$

- Since $N = 2^{h+1} - 1$, then sum of heights is $O(N)$

- Slightly better for complete binary tree
Binary Heap Operations
Worst-case Analysis

- Height of heap is $\lceil \log_2 N \rceil$
- insert: $O(\log_2 N)$
 - 2.607 comparisons on average, i.e., $O(1)$
- deleteMin: $O(\log_2 N)$
- decreaseKey: $O(\log_2 N)$
- increaseKey: $O(\log_2 N)$
- remove: $O(\log_2 N)$
- buildHeap: $O(N)$
Applications

- Operating system scheduling
 - Process jobs by priority
- Graph algorithms
 - Find the least-cost, neighboring vertex
- Event simulation
 - Instead of checking for events at each time click, look up next event to happen
Priority Queues: Alternatives to Binary Heaps

- **d-Heap**
 - Each node has d children
 - insert in $O(\log_d N)$ time
 - deleteMin in $O(d \log_d N)$ time

- Binary heaps are 2-Heaps
Mergeable Heaps

- Heap merge operation
 - Useful for many applications
 - Merge two (or more) heaps into one
 - Identify new minimum element
 - Maintain heap-order property
 - Merge in $O(\log N)$ time
 - Still support insert and deleteMin in $O(\log N)$ time
 - Insert = merge existing heap with one-element heap
- d-Heaps require $O(N)$ time to merge
Leftist Heaps

- Null path length \(\text{npl}(X) \) of node \(X \)
 - Length of the shortest path from \(X \) to a node without two children

- Leftist heap property
 - For every node \(X \) in heap, \(\text{npl}(\text{leftChild}(X)) \geq \text{npl}(\text{rightChild}(X)) \)

- Leftist heaps have deep left subtrees and shallow right subtrees
 - Thus if operations reside in right subtree, they will be faster
Leftist Heaps

npl(X) shown in nodes

Leftist heap

Not a leftist heap
Leftist Heaps

- Theorem 6.2
 - A leftist tree with \(r \) nodes on the right path must have at least \(2^r - 1 \) nodes.

 Thus, a leftist tree with \(N \) nodes has a right path with at most \(\lfloor \log(N + 1) \rfloor \) nodes.
Leftist Heaps

- Merge heaps H1 and H2
 - Assume root(H1) > root(H2)
 - Recursively merge H1 with right subheap of H2
 - If result is not leftist, then swap the left and right subheaps
 - Running time $O(\log N)$

- DeleteMin
 - Delete root and merge children
Leftist Heaps: Example

H_1

H_2
Leftist Heaps: Example

Merge H2 (larger root) with right sub-heap of H1 (smaller root).
Leftist Heaps: Example

Attach previous heap as H1’s right child. Leftist heap?
Leftist Heaps: Example

Swap root’s children to make leftist heap.
Skew Heaps

- Self-adjusting version of leftist heap
- Skew heaps are to leftist heaps as splay trees are to AVL trees
- Skew merge same as leftist merge, except we always swap left and right subheaps
- No need to maintain or test NPL of nodes
- Worst case is $O(N)$
- Amortized cost of M operations is $O(M \log N)$
Binomial Queues

- Support all three operations in $O(\log N)$ worst-case time per operation
- Insertions take $O(1)$ average-case time
- Key idea
 - Keep a collection of heap-ordered trees to postpone merging
A binomial queue is a forest of binomial trees
 - Each in heap order
 - Each of a different height

A binomial tree B_k of height k consists of two B_{k-1} binomial trees
 - The root of one B_{k-1} tree is the child of the root of the other B_{k-1} tree
Binomial Trees

$B_0 \quad B_1 \quad B_2 \quad B_3$

B_4
Binomial Trees

- Binomial trees of height k have exactly 2^k nodes.
- Number of nodes at depth d is $\binom{k}{d}$, the binomial coefficient.
- A priority queue of any size can be represented by a binomial queue.
 - Binary representation of B_k

H_1:
```
16
  18
12
  21
  24
  65
```
Binomial Queue Operations

- Minimum element found by checking roots of all trees
 - At most \((\log_2 N)\) of them, thus \(O(\log N)\)
 - Or, \(O(1)\) by maintaining pointer to minimum element
Binomial Queue Operations

- Merge (H1, H2) → H3
 - Add trees of H1 and H2 into H3 in increasing order by depth
 - Traverse H3
 - If find two consecutive B_k trees, then create a B_{k+1} tree
 - If three consecutive B_k trees, then leave first, combine last two
 - Never more than three consecutive B_k trees
- Keep binomial trees ordered by height
- $\min(H3) = \min(\min(H1), \min(H2))$
- Running time $O(\log N)$
Merge Example

H_1:
16
 18

12
 21
 24
 65

H_2:
13
 14
 26

23
 51
 24
 65

H_3:
13

23
 51
 24
 65

12
 21
 24
 65
 65
 26
 16
 18
Binomial Queue Operations

- Insert \((x, H1)\)
 - Create single-element queue \(H2\)
 - Merge \((H1,H2)\)
- Running time proportional to minimum \(k\) such that \(B_k\) not in heap
- \(O(\log N)\) worst case
- Probability \(B_k\) not present is 0.5
 - Thus, likely to find empty \(B_k\) after two tries on average
 - \(O(1)\) average case
Binomial Queue Operations

- deleteMin (H1)
 - Remove min(H1) tree from H1
 - Create heap H2 from the children of min(H)
 - Merge (H1,H2)
- Running time $O(\log N)$
deleteMin Example

$H_3: 13$

Before deleteMin:

```
        23
       /  \
      51   24
       \   /  \
        65 24
```

After deleteMin:

```
        23
       /  \
      51   24
       \   /  \
        65 24
```

```
        12
       /  \
      21   24
       \   /  \
        65 65
```

```
        14
       /  \
      26   16
       \   /  \
        18 18
```
Binomial Queue Implementation

- Array of binomial trees
- Trees use first-child, right-sibling representation
template <typename Comparable>
class BinomialQueue
{
 public:
 BinomialQueue();
 BinomialQueue(const Comparable & item);
 BinomialQueue(const BinomialQueue & rhs);
 ~BinomialQueue();

 bool isEmpty() const;
 const Comparable & findMin() const;

 void insert(const Comparable & x);
 void deleteMin();
 void deleteMin(Comparable & minItem);

 void makeEmpty();
 void merge(BinomialQueue & rhs);

 const BinomialQueue & operator= (const BinomialQueue & rhs);
private:
 struct BinomialNode
 {
 Comparable element;
 BinomialNode *leftChild;
 BinomialNode *nextSibling;

 BinomialNode(const Comparable & theElement,
 BinomialNode *lt, BinomialNode *rt)
 : element(theElement), leftChild(lt), nextSibling(rt) { }
 }

 enum { DEFAULT_TREES = 1 };

 int currentSize; // Number of items in priority queue
 vector<BinomialNode *> theTrees; // An array of tree roots

 int findMinIndex() const;
 int capacity() const;
 BinomialNode * combineTrees(BinomialNode *t1, BinomialNode *t2);
 void makeEmpty(BinomialNode * & t);
 BinomialNode * clone(BinomialNode *t) const;
};
/**
 * Return the result of merging equal-sized t1 and t2.
 */
BinomialNode * combineTrees(BinomialNode *t1, BinomialNode *t2)
{
 if(t2->element < t1->element)
 return combineTrees(t2, t1);
 t2->nextSibling = t1->leftChild;
 t1->leftChild = t2;
 return t1;
}
/**
 * Merge rhs into the priority queue.
 * rhs becomes empty. rhs must be different from this.
 */

void merge(BinomialQueue & rhs)
{
 if(this == &rhs) // Avoid aliasing problems
 return;

 currentSize += rhs.currentSize;

 if(currentSize > capacity())
 {
 int oldNumTrees = theTrees.size();
 int newNumTrees = max(theTrees.size(), rhs.theTrees.size()) + 1;
 theTrees.resize(newNumTrees);
 for(int i = oldNumTrees; i < newNumTrees; i++)
 theTrees[i] = NULL;
 }
}
BinomialNode *carry = NULL;
for(int i = 0, j = 1; j <= currentSize; i++, j *= 2)
{
 BinomialNode *t1 = theTrees[i];
 BinomialNode *t2 = i < rhs.theTrees.size() ? rhs.theTrees[i] : NULL;
 int whichCase = t1 == NULL ? 0 : 1;
 whichCase += t2 == NULL ? 0 : 2;
 whichCase += carry == NULL ? 0 : 4;

 switch(whichCase)
 {
 case 0: /* No trees */
 case 1: /* Only this */
 break;
 case 2: /* Only rhs */
 theTrees[i] = t2;
 rhs.theTrees[i] = NULL;
 break;
 case 4: /* Only carry */
 theTrees[i] = carry;
 carry = NULL;
 break;
 }
}
case 3: /* this and rhs */
 carry = combineTrees(t1, t2);
 theTrees[i] = rhs.theTrees[i] = NULL;
 break;

case 5: /* this and carry */
 carry = combineTrees(t1, carry);
 theTrees[i] = NULL;
 break;

case 6: /* rhs and carry */
 carry = combineTrees(t2, carry);
 rhs.theTrees[i] = NULL;
 break;

case 7: /* All three */
 theTrees[i] = carry;
 carry = combineTrees(t1, t2);
 rhs.theTrees[i] = NULL;
 break;

 }
 }

for(int k = 0; k < rhs.theTrees.size(); k++)
 rhs.theTrees[k] = NULL;
 rhs.currentSize = 0;

}
/*
 * Remove the minimum item and place it in minItem.
 * Throws UnderflowException if empty.
 */

void deleteMin(Comparable & minItem)
{
 if(isEmpty())
 throw UnderflowException();

 int minIndex = findMinIndex();
 minItem = theTrees[minIndex]->element;
}
BinomialNode *oldRoot = theTrees[minIndex];
BinomialNode *deletedTree = oldRoot->leftChild;
delete oldRoot;

// Construct H''
BinomialQueue deletedQueue;
deletedQueue.theTrees.resize(minIndex + 1);
deletedQueue.currentSize = (1 << minIndex) - 1;
for(int j = minIndex - 1; j >= 0; j--)
{
 deletedQueue.theTrees[j] = deletedTree;
 deletedTree = deletedTree->nextSibling;
 deletedQueue.theTrees[j]->nextSibling = NULL;
}

// Construct H'
theTrees[minIndex] = NULL;
currentSize -= deletedQueue.currentSize + 1;
merge(deletedQueue);
35 /**
36 * Find index of tree containing the smallest item in the priority queue.
37 * The priority queue must not be empty.
38 * Return the index of tree containing the smallest item.
39 */
40 int findMinIndex() const
41 {
42 int i;
43 int minIndex;
44
45 for(i = 0; theTrees[i] == NULL; i++)
46 ;
47
48 for(minIndex = i; i < theTrees.size(); i++)
49 if(theTrees[i] != NULL &&
50 theTrees[i]->element < theTrees[minIndex]->element)
51 minIndex = i;
52
53 return minIndex;
54 }
Priority Queues in STL

- Binary heap
- Maintains maximum element
- Methods
 - Push, top, pop, empty, clear

```cpp
#include <iostream>
#include <queue>
using namespace std;

int main ()
{
    priority_queue<int> Q;
    for (int i=0; i<100; i++)
        Q.push(i);
    while (! Q.empty())
    {
        cout << Q.top() << endl;
        Q.pop();
    }
}
```
```cpp
#include <iostream>
#include <vector>
#include <queue>
#include <functional>
#include <string>

using namespace std;

// Empty the priority queue and print its contents.
template<typename PriorityQueue>
void dumpContents( const string & msg, PriorityQueue & pq )
{
    cout << msg << ":" << endl;
    while( !pq.empty() )
    {
        cout << pq.top() << endl;
        pq.pop();
    }
}

// Do some inserts and removes (done in dumpContents).
int main()
{
    priority_queue<int> maxPQ;
    priority_queue<int,vector<int>,greater<int> > minPQ;
    minPQ.push( 4 ); minPQ.push( 3 ); minPQ.push( 5 );
    maxPQ.push( 4 ); maxPQ.push( 3 ); maxPQ.push( 5 );
    dumpContents( "minPQ", minPQ ); // 3 4 5
    dumpContents( "maxPQ", maxPQ ); // 5 4 3
    return 0;
}
Summary

- Priority queues maintain the minimum or maximum element of a set
- Support $O(\log N)$ operations worst-case
  - insert, deleteMin, merge
- Support $O(1)$ insertions average case
- Many applications in support of other algorithms