Introduction

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Advanced Data Structures

“Why not just use a big array?”

Example problem
- Search for a number k in a set of N numbers

Solution
- Store numbers in an array of size N
- Iterate through array until find k

Number of checks
- Best case: 1 ($k=15$)
- Worst case: N ($k=27$)
- Average case: $N/2$

15 10 22 3 12 19 27
Advanced Data Structures

- Solution #2
 - Store numbers in a binary search tree
 - Search tree until find k
 - Number of checks
 - Best case: 1 (k=15)
 - Worst case: \(\log_2 N \) (k=27)
 - Average case: \(\frac{\log_2 N}{2} \)
Analysis

- Does it matter?
 - N vs. (log₂ N)
Analysis

- Does it matter?

- Assume
 - N = 1,000,000,000
 - 1 billion (Walmart transactions in 100 days)
 - 1 Ghz processor = 10^9 cycles per second

- Solution #1 (10 cycles per check)
 - Worst case: 1 billion checks = 10 seconds

- Solution #2 (100 cycles per check)
 - Worst case: 30 checks = 0.000003 seconds
Advanced Data Structures

Moral
- Appropriate data structures ease design and improve performance

Challenge
- Design appropriate data structure and associated algorithms for a problem
- Analyze to show improved performance
Course Overview

- Advanced data structures
 - Trees, hash tables, heaps, disjoint sets, graphs
- Algorithm development and analysis
 - Insert, delete, search, sort
- Applications
- Object-oriented implementation in C++
Course Details

- **Course website**

 www.eecs.wsu.edu/~holder/courses/CptS223.html

- **Email list**

 Homework 0: Send me your name and email address

 To: holder@wsu.edu
 Subject: Student in 223

 Name: ...
 Email: ...