Trees

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Trees (e.g.)

- Image processing
- Phylogenetics
- Organization charts
- Large databases
Overview

- Tree data structure
- Binary search trees
 - Support $O(\log_2 N)$ operations
 - Balanced trees
- B-trees for accessing secondary storage
- STL set and map classes
- Applications
Trees

G is parent of N and child of A

M is child of F and grandchild of A

Generic Tree:

- root
 - T_1
 - T_2
 - T_3
 - T_4
 - ...
Definitions

- A tree T is a set of nodes
 - Each non-empty tree has a root node and zero or more sub-trees T_1, \ldots, T_k
 - Each sub-tree is a tree
 - The root of a tree is connected to the root of each subtree by a directed edge

- If node n_1 connects to sub-tree rooted at n_2, then
 - n_1 is the parent of n_2
 - n_2 is a child of n_1

- Each node in a tree has only one parent
 - Except the root, which has no parent
Definitions

- Nodes with no children are **leaves**
- Nodes with the same parent are **siblings**
- A **path** from nodes n_1 to n_k is a sequence of nodes n_1, n_2, \ldots, n_k such that n_i is the parent of n_{i+1} for $1 \leq i < k$
 - The **length** of a path is the number of edges on the path (i.e., $k-1$)
 - Each node has a path of length 0 to itself
 - There is exactly one path from the root to each node in a tree
- Nodes n_i, \ldots, n_k are **descendants** of n_i and **ancestors** of n_k
- Nodes n_{i+1}, \ldots, n_k are **proper descendants**
- Nodes n_i, \ldots, n_{k-1} are **proper ancestors**
Definitions

B, C, D, E, F, G are siblings

B, C, H, I, P, Q, K, L, M, N are leaves

K, L, M are siblings

The path from A to Q is A – E – J – Q
A, E, J are proper ancestors of Q
E, J, Q (and I, P) are proper descendants of A
Definitions

- The **depth** of a node n_i is the length of the unique path from the root to n_i
 - The root node has a depth of 0
 - The depth of a tree is the depth of its deepest leaf

- The **height** of a node n_i is the length of the longest path from n_i to a leaf
 - All leaves have a height of 0
 - The height of a tree is the height of its root node

- The height of a tree equals its depth
Trees

Height of each node?
Height of tree?
Depth of each node?
Depth of tree?
Implementation of Trees

- Solution 1: Vector of children

```cpp
struct TreeNode
{
    Object element;
    vector<TreeNode> children;
}
```

- Solution 2: List of children

```cpp
struct TreeNode
{
    Object element;
    list<TreeNode> children;
}
```
Implementation of Trees

Solution 3: First-child, next-sibling

```c
struct TreeNode
{
    Object element;
    TreeNode *firstChild;
    TreeNode *nextSibling;
}
```
A **binary tree** is a tree where each node has no more than two children.

If a node is missing one or both children, then that child pointer is `NULL`.

```c
struct BinaryTreeNode {
    Object element;
    BinaryTreeNode *leftChild;
    BinaryTreeNode *rightChild;
}
```
Example: Expression Trees

- Store expressions in a binary tree
 - Leaves of tree are operands (e.g., constants, variables)
 - Other internal nodes are unary or binary operators
- Used by compilers to parse and evaluate expressions
 - Arithmetic, logic, etc.
- E.g., \((a + b \times c) + ((d \times e + f) \times g)\)
Example: Expression Trees

- Evaluate expression
 - Recursively evaluate left and right subtrees
 - Apply operator at root node to results from subtrees
 - **Post-order** traversal: left, right, root

- Traversals
 - **Pre-order** traversal: root, left, right
 - **In-order** traversal: left, root, right
Traversals

- Pre-order:
- Post-order:
- In-order:
Example: Expression Trees

- Constructing an expression tree from postfix notation
 - Use a stack of pointers to trees
 - Read postfix expression left to right
 - If operand, then push on stack
 - If operator, then:
 - Create a BinaryTreeNode with operator as the element
 - Pop top two items off stack
 - Insert these items as left and right child of new node
 - Push pointer to node on the stack
Example: Expression Trees

E.g., $a \ b + c \ d \ e + \ * \ *$

(1) \top

(2) \top

(3) \top

(4) \top
Example: Expression Trees

- E.g., $a \ b + c \ d \ e + * *$

(5) $\begin{array}{c}
\text{top} \\
\text{+} \\
a \\
b \\
* \\
c \\
+ \\
d \\
e
\end{array}$

(6) $\begin{array}{c}
\text{top} \\
* \\
+ \\
a \\
b \\
c \\
+ \\
d \\
e
\end{array}$
Binary Search Trees

- Complexity of searching for an item in a binary tree containing \(N \) nodes is \(O(\log N) \)
- Binary search tree (BST)
 - For any node \(n \), items in left subtree of \(n \) \(\leq \) item in node \(n \) \(\leq \) items in right subtree of \(n \)
Searching in BSTs

Contains \((T, x)\)

\[
\begin{aligned}
\text{if } (T == \text{NULL}) & \text{ then return NULL} \\
\text{if } (T->\text{element} == x) & \text{ then return } T \\
\text{if } (x < T->\text{element}) & \text{ then return } \text{Contains } (T->\text{leftChild}, x) \\
\text{else return } & \text{Contains } (T->\text{rightChild}, x)
\end{aligned}
\]

Typically assume no duplicate elements. If duplicates, then store counts in nodes, or each node has a list of objects.
Searching in BSTs

- Complexity of searching a BST with \(N \) nodes is \(O(?) \)
- Complexity of searching a BST of height \(h \) is \(O(h) \)
- \(h = f(N) \)?
Searching in BSTs

- Finding the minimum element
 - Smallest element in left subtree

```c
findMin (T)
{
    if (T == NULL) then return NULL
    if (T->leftChild == NULL) then return T
    else return findMin (T->leftChild)
}
```

- Complexity ?
Searching in BSTs

- Finding the maximum element
 - Largest element in right subtree

```c
findMax (T)
{
    if (T == NULL)
        then return NULL
    if (T->rightChild == NULL)
        then return T
    else return findMax (T->rightChild)
}
```

- Complexity?
Printing BSTs

- In-order traversal

```
PrintTree (T)
{
    if (T == NULL)
        then return
    PrintTree (T->leftChild)
    cout << T->element
    PrintTree (T->rightChild)
}
```

- Complexity?
Inserting into BSTs

- E.g., insert 5
Inserting into BSTs

- “Search” for element until reach end of tree; insert new element there

```c
Insert (x, T)
{
    if (T == NULL)
        then T = new Node(x)
    if (x < T->element)
        then if (T->leftChild == NULL)
                        then T->leftChild = new Node(x)
                        else Insert (x, T->leftChild)
        else if (T->rightChild == NULL)
                        then (T->rightChild = new Node(x)
                        else Insert (x, T->rightChild)
    }
```

Complexity?
Removing from BSTs

- Case 1: Node to remove has 0 or 1 child
 - Just remove it
- E.g., remove 4
Removing from BSTs

- Case 2: Node to remove has 2 children
 - Replace node element with successor
 - Remove successor (case 1)
- E.g., remove 2

```
  6
  / \   \
 2   8
 / \   \
1   5   \
 3   4
```

```
  6
  /   \
 3     8
 /     \
1 5   4
```
Removing from BSTs

Remove \((x, T) \)
{
 if (T == NULL) then return
 if (x == T->element)
 then if ((T->left == NULL) && (T->right != NULL))
 then T = T->right // implied delete
 else if ((T->right == NULL) && (T->left != NULL))
 then T = T->left // implied delete
 else successor = findMin (T->right) // Case 2
 T->element = successor->element
 Remove (T->element, T->right)
 else if (x < T->element)
 then Remove (x, T->left)
 else Remove (x, T->right)
}

Complexity?
Implementation of BST

```cpp
template <typename Comparable>
class BinarySearchTree {
    public:
        BinarySearchTree();
        BinarySearchTree(const BinarySearchTree & rhs);
        ~BinarySearchTree();

        const Comparable & findMin() const;
        const Comparable & findMax() const;
        bool contains(const Comparable & x) const;
        bool isEmpty() const;
        void printTree() const;

        void makeEmpty();
        void insert(const Comparable & x);
        void remove(const Comparable & x);

        const BinarySearchTree & operator=(const BinarySearchTree & rhs);
};
```
private:
 struct BinaryNode
 {
 Comparable element;
 BinaryNode *left;
 BinaryNode *right;

 BinaryNode(const Comparable & theElement, BinaryNode *lt, BinaryNode *rt)
 : element(theElement), left(lt), right(rt) { }
 };

BinaryNode *root;

void insert(const Comparable & x, BinaryNode * & t) const;
void remove(const Comparable & x, BinaryNode * & t) const;
BinaryNode * findMin(BinaryNode *t) const;
BinaryNode * findMax(BinaryNode *t) const;
bool contains(const Comparable & x, BinaryNode *t) const;
void makeEmpty(BinaryNode * & t);
void printTree(BinaryNode *t) const;
BinaryNode * clone(BinaryNode *t) const;

Pointer to tree node passed by reference so it can be reassigned within function.
/*
 * Returns true if x is found in the tree.
 */
bool contains(const Comparable & x) const
{
 return contains(x, root);
}

/**
 * Insert x into the tree; duplicates are ignored.
 */
void insert(const Comparable & x)
{
 insert(x, root);
}

/**
 * Remove x from the tree. Nothing is done if x is not found.
 */
void remove(const Comparable & x)
{
 remove(x, root);
}
/**
 * Internal method to test if an item is in a subtree.
 * x is item to search for.
 * t is the node that roots the subtree.
 */

bool contains(const Comparable & x, BinaryNode *t) const
{
 if(t == NULL)
 return false;
 else if(x < t->element)
 return contains(x, t->left);
 else if(t->element < x)
 return contains(x, t->right);
 else
 return true; // Match
}
/**
 * Internal method to find the smallest item in a subtree t.
 * Return node containing the smallest item.
 */

BinaryNode * findMin(BinaryNode *t) const
{
 if(t == NULL)
 return NULL;
 if(t->left == NULL)
 return t;
 return findMin(t->left);
}

/**
 * Internal method to find the largest item in a subtree t.
 * Return node containing the largest item.
 */

BinaryNode * findMax(BinaryNode *t) const
{
 if(t != NULL)
 while(t->right != NULL)
 t = t->right;
 return t;
}
/**
 * Internal method to insert into a subtree.
 * x is the item to insert.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */

void insert(const Comparable & x, BinaryNode * & t)
{
 if(t == NULL)
 t = new BinaryNode(x, NULL, NULL);
 else if(x < t->element)
 insert(x, t->left);
 else if(t->element < x)
 insert(x, t->right);
 else
 ; // Duplicate; do nothing
}
/**
 * Internal method to remove from a subtree.
 * x is the item to remove.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */

void remove(const Comparable & x, BinaryNode * & t)
{
 if(t == NULL)
 return; // Item not found; do nothing
 if(x < t->element)
 remove(x, t->left);
 else if(t->element < x)
 remove(x, t->right);
 else if(t->left != NULL && t->right != NULL) // Two children
 {
 t->element = findMin(t->right)->element;
 remove(t->element, t->right);
 }
 else
 {
 BinaryNode *oldNode = t;
 t = (t->left != NULL) ? t->left : t->right;
 delete oldNode;
 }
}
1 /**
2 * Destructor for the tree
3 */
4 ~BinarySearchTree()
5 {
6 makeEmpty();
7 }
8 /**<
9 * Internal method to make subtree empty.
10 */
11 void makeEmpty(BinaryNode * & t)
12 {
13 if(t != NULL)
14 {
15 makeEmpty(t->left);
16 makeEmpty(t->right);
17 delete t;
18 }
19 t = NULL;
20 }
/**
 * Deep copy.
 */

const BinarySearchTree & operator=(const BinarySearchTree & rhs)
{
 if(this != &rhs)
 {
 makeEmpty();
 root = clone(rhs.root);
 }
 return *this;
}

/**
 * Internal method to clone subtree.
 */

BinaryNode * clone(BinaryNode *t) const
{
 if(t == NULL)
 return NULL;

 return new BinaryNode(t->element, clone(t->left), clone(t->right));
}
BST Analysis

- `printTree`, `makeEmpty` and `operator=`
 - Always $O(N)$

- `insert`, `remove`, `contains`, `findMin`, `findMax`
 - $O(d)$, where $d =$ depth of tree
 - Worst case: $d =$?
 - Best case: $d =$? (not when $N=0$)
 - Average case: $d =$?
BST Average-Case Analysis

- Internal path length
 - Sum of the depths of all nodes in the tree
- Compute average internal path length over all possible insertion sequences
 - Assume all insertion sequences are equally likely
 - E.g., “1 2 3 4 5 6 7”, “7 6 5 4 3 2 1”,..., “4 2 6 1 3 5 7”
 - Result: $O(N \log_2 N)$
- Thus, average depth $= O(N \log_2 N) / N = O(\log_2 N)$
Randomly Generated 500-node BST (insert only)

Average node depth = 9.98
\[\log_2 500 = 8.97 \]
Previous BST after 500^2
Random Insert/Remove Pairs

Average node depth = 12.51
$\log_2 500 = 8.97$
BST Average-Case Analysis

- After randomly inserting N nodes into an empty BST
 - Average depth $= \mathcal{O}(\log_2 N)$
- After $\Theta(N^2)$ random insert/remove pairs into an N-node BST
 - Average depth $= \Theta(N^{1/2})$

Why?

Solutions?
- Overcome problematic average cases?
- Overcome worst case?
Balanced BSTs

- **AVL trees**
 - Height of left and right subtrees at every node in BST differ by at most 1
 - Maintained via rotations
 - BST depth always $O(\log_2 N)$

- **Splay trees**
 - After a node is accessed, push it to the root via AVL rotations
 - Average depth per operation is $O(\log_2 N)$
AVL Trees

- AVL (Adelson-Velskii and Landis, 1962)
- For every node in the BST, the heights of its left and right subtrees differ by at most 1
- Height of BST is $O(\log_2 N)$
 - Actually, $1.44 \log_2(N+2) – 1.328$
 - Minimum nodes $S(h)$ in AVL tree of height h
 - $S(h) = S(h-1) + S(h-2) + 1$
 - Similar to Fibonacci recurrence
AVL Trees

AVL tree?

AVL tree?
Maintaining Balance Condition

- If we can maintain balance condition, then all BST operations are $O(\log_2 N)$
- Maintain height $h(t)$ at each node t
 - $h(t) = \max (h(t->left), h(t->right)) + 1$
 - $h($empty tree$) = -1$
- Which operations can upset balance condition?
AVL Remove

- Assume `remove` accomplished using lazy deletion
 - Removed nodes only marked as deleted, but not actually removed from BST
 - Unmarked when same object re-inserted
 - Re-allocation time avoided
 - Does not affect $O(\log_2 N)$ height as long as deleted nodes are not in the majority
 - Does require additional memory per node
- Can accomplish `remove` without lazy deletion
AVL Insert

- Insert can violate AVL balance condition
- Can be fixed by a rotation

Inserting 6 violates AVL balance condition

```
2
/   \
1     4
/     /
3     7
```

Rotating 7-8 restores balance

```
2
/   \
1     4
/     /
3     6
```

```
      5
    /    \
  2      7
 /       /  \
1  4     6  8
```

```
      5
    /    \
  2      7
 /       /  \
1  4     6  8
```
AVL Insert

- Only nodes along path to insertion have their balance altered
- Follow path back to root, looking for violations
- Fix violations using single or double rotations
AVL Insert

- Assume node \(k \) needs to be rebalanced
- Four cases leading to violation
 1. An insertion into the left subtree of the left child of \(k \)
 2. An insertion into the right subtree of the left child of \(k \)
 3. An insertion into the left subtree of the right child of \(k \)
 4. An insertion into the right subtree of the right child of \(k \)
- Cases 1 and 4 handled by single rotation
- Cases 2 and 3 handled by double rotation
AVL Insert

- Case 1: Single rotation right

Violation

AVL balance condition okay. BST order okay.
AVL Insert

- Case 1 example
AVL Insert

- Case 4: Single rotation left

AVL balance condition okay. BST order okay.
AVL Insert

- Case 2: Single rotation fails
AVL Insert

- Case 2: Left-right double rotation

Violation

AVL balance condition okay.
BST order okay.
AVL Insert

- Case 3: Right-left double rotation

Violation

AVL balance condition okay.
BST order okay.
AVL Tree Implementation

```c
1 struct AvlNode
2 {
3     Comparable element;
4     AvlNode *left;
5     AvlNode *right;
6     int    height;
7
8     AvlNode( const Comparable & theElement, AvlNode *lt,
9                   AvlNode *rt, int h = 0 )
10     : element( theElement ), left( lt ), right( rt ), height( h )
11     };
```
AVL Tree Implementation

1 /**
2 * Return the height of node t or -1 if NULL.
3 */
4 int height(AvlNode *t) const
5 {
6 return t == NULL ? -1 : t->height;
7 }
/**
 * Internal method to insert into a subtree.
 * x is the item to insert.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */
void insert(const Comparable & x, AvlNode * & t)
{
 if(t == NULL)
 t = new AvlNode(x, NULL, NULL);
 else if(x < t->element)
 {
 insert(x, t->left);
 if(height(t->left) - height(t->right) == 2)
 if(x < t->left->element)
 rotateWithLeftChild(t);
 else
 doubleWithLeftChild(t);
 }
 else if(t->element < x)
 {
 insert(x, t->right);
 if(height(t->right) - height(t->left) == 2)
 if(t->right->element < x)
 rotateWithRightChild(t);
 else
 doubleWithRightChild(t);
 }
 else
 ; // Duplicate; do nothing
 t->height = max(height(t->left), height(t->right)) + 1;
}
/**
 * Rotate binary tree node with left child.
 * For AVL trees, this is a single rotation for case 1.
 * Update heights, then set new root.
 */

void rotateWithLeftChild(AvlNode * & k2)
{
 AvlNode *k1 = k2->left;
 k2->left = k1->right;
 k1->right = k2;
 k2->height = max(height(k2->left), height(k2->right)) + 1;
 k1->height = max(height(k1->left), k2->height) + 1;
 k2 = k1;
}
```c
1     /**
2     * Double rotate binary tree node: first left child
3     * with its right child; then node k3 with new left child.
4     * For AVL trees, this is a double rotation for case 2.
5     * Update heights, then set new root.
6     */
7     void doubleWithLeftChild( AvlNode * & k3 )
8     {
9         rotateWithRightChild( k3->left );
10        rotateWithLeftChild( k3 );
11     }
```
Splay Tree

- After a node is accessed, push it to the root via AVL rotations
- Guarantees that any M consecutive operations on an empty tree will take at most $O(M \log_2 N)$ time
- Amortized cost per operation is $O(\log_2 N)$
- Still, some operations may take $O(N)$ time
- Does not require maintaining height or balance information
Splay Tree

Solution 1
- Perform single rotations with accessed/new node and parent until accessed/new node is the root

Problem
- Pushes current root node deep into tree
- In general, can result in $O(M \times N)$ time for M operations
- E.g., insert 1, 2, 3, ..., N
Splay Tree

- Solution 2
 - Still rotate tree on the path from the new/accessed node X to the root
 - But, rotations are more selective based on node, parent and grandparent
 - If X is child of root, then rotate X with root
 - Otherwise, ...
Splaying: Zig-zag

- Node X is right-child of parent, which is left-child of grandparent (or vice-versa)
- Perform double rotation (left, right)
Splaying: Zig-zig

- Node X is left-child of parent, which is left-child of grandparent (or right-right)
- Perform double rotation (right-right)
Splay Tree: Example

- Consider previous worst-case scenario: insert 1, 2, ..., N; then access 1
Splay Tree: Remove

- Access node to be removed (now at root)
- Remove node leaving two subtrees T_L and T_R
- Access largest element in T_L
 - Now at root; no right child
- Make T_R right child of root of T_L
Balanced BSTs

- **AVL trees**
 - Guarantees $O(\log_2 N)$ behavior
 - Requires maintaining height information

- **Splay trees**
 - Guarantees amortized $O(\log_2 N)$ behavior
 - Moves frequently-accessed elements closer to root of tree

- Both assume N-node tree can fit in main memory
 - If not?
Top 10 Largest Databases

<table>
<thead>
<tr>
<th>Organization</th>
<th>Database Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDCC</td>
<td>6,000 TBs</td>
</tr>
<tr>
<td>NERSC</td>
<td>2,800 TBs</td>
</tr>
<tr>
<td>AT&T</td>
<td>323 TBs</td>
</tr>
<tr>
<td>Google</td>
<td>33 trillion rows (91 million insertions per day)</td>
</tr>
<tr>
<td>Sprint</td>
<td>3 trillion rows (100 million insertions per day)</td>
</tr>
<tr>
<td>ChoicePoint</td>
<td>250 TBs</td>
</tr>
<tr>
<td>Yahoo!</td>
<td>100 TBs</td>
</tr>
<tr>
<td>YouTube</td>
<td>45 TBs</td>
</tr>
<tr>
<td>Amazon</td>
<td>42 TBs</td>
</tr>
<tr>
<td>Library of Congress</td>
<td>20 TBs</td>
</tr>
</tbody>
</table>

How many bytes in a “yotta”-byte?
Use a BST?

- Google: 33 trillion items
- Indexed by IP (duplicates)
- Access time
 - $h = \log_2 33 \times 10^{12} = 44.9$
 - Assume 120 disk accesses per second
 - Each search takes 0.37 seconds
 - Assumes exclusive use of data
Idea

- Use a 3-way search tree
- Each node stores 2 keys and has at most 3 children
- Each node access brings in 2 keys and 3 child pointers
- Height of a balanced 3-way search tree?
Bigger Idea

- Use an M-ary search tree
- Each node access brings in M-1 keys and M child pointers
- Choose M so node size = disk page size
- Height of tree = $\log_M N$
Example

- Standard disk page size = 8192 bytes
- Assume keys use 32 bytes, pointers use 4 bytes
 - Keys uniquely identify data elements
- $32*(M-1) + 4*M = 8192$
- $M = 228$
- $\log_{228} 33 \times 10^{12} = 5.7$ (disk accesses)
- Each search takes 0.047 seconds
A **B-tree** (also called a **B⁺ tree**) of order M is an M-ary tree with the following properties:

1. Data items are stored at the leaves.
2. Non-leaf nodes store up to $M-1$ keys.
 - Key i represents the smallest key in subtree $i+1$.
3. Root node is either a leaf or has between 2 and M children.
4. Non-leaf nodes have between $\lceil M/2 \rceil$ and M children.
5. All leaves at same depth and have between $\lceil L/2 \rceil$ and L data items.

Requiring nodes to be half full avoids degeneration into binary tree.
B-tree

- B-tree of order 5
 - Node has 2-4 keys and 3-5 children
 - Leaves have 3-5 data elements
B-tree: Choosing L

- Assuming a data element requires 256 bytes
- Leaf node capacity of 8192 bytes implies $L=32$
- Each leaf node has between 16 and 32 data elements
- Worst case for Google
 - Leaves = $33 \times 10^{12} / 16 = 2 \times 10^{12}$
 - $\log_{M/2} 2 \times 10^{12} = \log_{114} 2 \times 10^{12} = 5.98$
B-tree: Insertion

- **Case 1: Insert into a non-full leaf node**
 - E.g., insert 57 into previous order 5 tree
B-tree: Insertion

- **Case II:** Insert into full leaf, but parent has room
 - Split leaf and promote middle element to parent
 - E.g., insert 55 into previous tree

![B-tree diagram]

- 41 66 87
- 8 18 26 35
- 48 51 54 57
- 72 78 83
- 92 97

2 4 6
- 8 10 12 14 16
- 35 36 37 38 39
- 41 42 44 46
- 51 52 53
- 54 55 56 57 58 59
- 66 68 69 70
- 72 73 74 76
- 83 84 85
- 87 89 90 92 93 95 97 98 99
B-tree: Insertion

- Case III: Insert into full leaf, parent has no room
 - Split parent, promote parent’s middle element to grandparent
 - Continue until non-full parent or split root
 - E.g., insert 40 into previous tree

Insert 43 and 45?
B-tree: Deletion

- Case 1: Leaf node containing item not at minimum
 - E.g., remove 16 from previous tree
B-tree: Deletion

- Case 2: Leaf node containing item has minimum elements, neighbor not at minimum
 - Adopt element from neighbor
 - E.g., remove 6 from previous tree
B-tree: Deletion

- Case 3: Leaf node containing item has minimum elements, neighbors have minimum elements
 - Merge with neighbor and intermediate key
 - If parent now below minimum, continue up the tree
 - E.g., remove 99 from previous tree
B-trees

- B-trees are ordered search trees optimized for large N and secondary storage
- B-trees are M-ary trees with height \(\log_M N \)
 - \(M = O(10^2) \) based on disk page sizes
 - E.g., trillions of elements stored in tree of height 6
- Basis of many database architectures
C++ STL Sets and Maps

- `vector` and `list` STL classes inefficient for search
- STL `set` and `map` classes guarantee logarithmic insert, delete and search
STL set Class

- STL set class is an ordered container that does not allow duplicates
- Like lists and vectors, sets provide iterators and related methods: begin, end, empty and size
- Sets also support insert, erase and find
Set Insertion

- `insert` adds an item to the set and returns an iterator to it.
- Because a set does not allow duplicates, `insert` may fail.
 - In this case, `insert` returns an iterator to the item causing the failure.
- To distinguish between success and failure, `insert` actually returns a pair of results.
 - This `pair` structure consists of an iterator and a Boolean indicating success.

```cpp
pair<iterator,bool> insert (const Object & x);
```
Sidebar: STL pair Class

- `pair<Type1,Type2>`
- Methods: `first`, `second`, `first_type`, `second_type`

```cpp
#include <utility>

pair<iterator,bool> insert (const Object & x) {
  iterator itr;
  bool found;
  ...
  return pair<itr,found>;
}
```
Set Insertion

- Giving `insert` a hint
  ```
  pair<iterator,bool> insert (iterator hint, const Object & x);
  ```
- For good hints, `insert` is O(1)
- Otherwise, reverts to one-parameter `insert`
- E.g.,
  ```
  set<int> s;
  for (int i = 0; i < 1000000; i++)
      s.insert (s.end(), i);
  ```
Set Deletion

- `int erase (const Object & x);`
 - Remove x, if found
 - Return number of items deleted (0 or 1)
- `iterator erase (iterator itr);`
 - Remove object at position given by iterator
 - Return iterator for object after deleted object
- `iterator erase (iterator start, iterator end);`
 - Remove objects from start up to (but not including) end
 - Returns iterator for object after last deleted object
Set Search

- `iterator find (const Object & x) const;`
 - Returns iterator to object (or end() if not found)
 - Unlike `contains`, which returns Boolean
- `find` runs in logarithmic time
STL map Class

- STL `map` class stores items, where an item consists of a key and a value.
- Like a `set` instantiated with a key/value pair.
- Keys must be unique.
- Different keys can map to the same value.
- `map` keeps items in order by key.
STL map Class

- Methods
 - `begin`, `end`, `size`, `empty`
 - `insert`, `erase`, `find`
- Iterators reference items of type `pair<KeyType,ValueType>`
- Inserted elements are also of type `pair<KeyType,ValueType>`
STL `map` Class

- Main benefit: overloaded `operator[]`
  ```cpp
  ValueType & operator[](const KeyType & key);
  ```
- If key is present in map
 - Returns reference to corresponding value
- If key is not present in map
 - Key is inserted into map with a default value
 - Reference to default value is returned

```cpp
map<string,double> salaries;
salaries["Pat"] = 75000.0;
```
Example

```cpp
struct ltstr {
    bool operator()(const char* s1, const char* s2) const {
        return strcmp(s1, s2) < 0;
    }
};

int main() {
    map<const char*, int, ltstr> months;
    months["january"] = 31;
    months["february"] = 28;
    months["march"] = 31;
    months["april"] = 30;
    ...
```

Example Comparator if key type not primitive
Example (cont.)

...

months["may"] = 31;
months["june"] = 30;
months["july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;
months["november"] = 30;
months["december"] = 31;
cout << "june -> " << months["june"] << endl;
map<const char*, int, ltstr>::iterator cur = months.find("june");
map<const char*, int, ltstr>::iterator prev = cur;
map<const char*, int, ltstr>::iterator next = cur;
++next; --prev;
cout << "Previous (in alphabetical order) is " << (*prev).first << endl;
cout << "Next (in alphabetical order) is " << (*next).first << endl;
}
Implementation of set and map

- Support insertion, deletion and search in worst-case logarithmic time
- Use balanced binary search tree
- Support for iterator
 - Tree node points to its predecessor and successor
 - Use only un-used tree left/right child pointers
 - Called a “threaded tree”
Summary: Trees

- Trees are ubiquitous in software
- Search trees important for fast search
 - Support logarithmic searches
 - Must be kept balanced (AVL, Splay, B-tree)
- STL `set` and `map` classes use balanced trees to support logarithmic insert, delete and search