Graph-based Learning

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University
Graph-based Learning

• Multi-relational data mining and learning
• SUBDUE graph-based relational learner
 – Discovery
 – Clustering
 – Graph grammar learning
 – Supervised learning
Multi-Relational Data Mining

• Looking for patterns involving multiple tables (relations) in a relational database

<table>
<thead>
<tr>
<th>Person</th>
<th>Married</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>Doe</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>80000</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>P2</td>
</tr>
<tr>
<td>Doe</td>
<td></td>
</tr>
<tr>
<td>Sally</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>90000</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>P7</td>
</tr>
<tr>
<td>Smith</td>
<td></td>
</tr>
<tr>
<td>Robert</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td></td>
</tr>
</tbody>
</table>

Multi-Relational Data Mining

• Approaches
 – Transform to non-relational problem
 – First-order logic based
 • Inductive Logic Programming (ILP)
 – Graph based
Graph-based Data Mining

- Finding all subgraphs g within a set of graph transactions G such that

$$\frac{\text{freq}(g)}{|G|} > t$$

- where t is the minimum support
Graph-based Data Mining

• Systems
 – Apriori-based Graph Mining (AGM)
 • Inokuchi, Washio and Motoda, 2003
 – Frequent Sub-Graph discovery (FSG)
 • Kuramochi and Karypis, 2001
 – Graph-based Substructure pattern mining (gSpan)
 • Yan and Han, 2002

• Focus on pruning and fast, code-based graph matching
Graph-based Relational Learning

- Finding patterns in graph(s)
 - Discovery
 - Clustering
 - Supervised learning
Graph-based Relational Learning

• Graph-Based Induction (GBI)
 – Yoshida, Motoda and Indurkhya, 1994

• SUBstructure Discovery Using Examples (SUBDUE)
 – Cook and Holder, 1994

• Focus on efficient subgraph generation and compression-based heuristic search
SUBDUE Graph-based Discovery

- Graph representation
- Graph compression and MDL
- Discovery algorithm
- Inexact graph match
- Background knowledge
- Parallel/distributed discovery
Graph Representation

- Input is a labeled (vertices and edges) directed graph
- A substructure is a connected subgraph
- An instance of a substructure is an isomorphic subgraph of the input graph
- Input graph compressed by replacing instances with vertex representing substructure
Graph Representation
Graph Compression and MDL

• Minimum Description Length (MDL) principle
 – Best theory minimizes description length of theory and the data given theory

• Best substructure S minimizes description length of substructure definition $DL(S)$ and compressed graph $DL(G/S)$

$$\min_S (DL(S) + DL(G | S))$$
Discovery Algorithm

1. Create substructure for each unique vertex label

Substructures:

triangle (4), square (4), circle (1), rectangle (1)
Discovery Algorithm

2. Expand best substructures by an edge or edge+neighboring vertex
3. Keep only best *beam-width* substructures on queue

4. Terminate when queue is empty or #discovered substructures > *limit*

5. Compress graph and repeat to generate hierarchical description
DNA Example
Sample SUBDUE Input

sample.g:

v 1 object e 1 11 shape
v 2 object e 2 12 shape
v 3 object e 3 13 shape
v 4 object e 4 14 shape
v 5 object e 5 15 shape
v 6 object e 6 16 shape
v 7 object e 7 17 shape
v 8 object e 8 18 shape
v 9 object e 9 19 shape
v 10 object e 10 20 shape
v 11 triangle e 1 5 on
v 12 triangle e 2 6 on
v 13 triangle e 3 7 on
v 14 triangle e 4 8 on
v 15 square e 5 10 on
v 16 square e 9 10 on
v 17 square e 10 2 on
v 18 square e 10 3 on
v 19 circle e 10 4 on
v 20 rectangle
Inexact Graph Match

• Some variations may occur between instances
• Want to abstract over minor differences
• Difference = cost of transforming one graph to make it isomorphic to another
• Match if cost/size < threshold
Inexact Graph Match

Least-cost match is \{(1,4), (2,3)\}
Inexact Graph Match

• Vertices considered by degree
• Polynomially constrained
 – Greedy after n^k partial mappings considered
 – Suboptimal mappings rare for $k>2$
Background Knowledge

• User-defined substructures
• Two alternative uses
 – Prime search queue
 – Initial graph compression
• Variant of discovery algorithm used to generate instances
Parallel/Distributed Discovery

• Divide graph into P partitions
• Distribute to P processors
• Each processor performs serial discovery on local partition
• Broadcast best substructures, evaluate on other processors
• Master processor stores best global substructures
Graph-based Clustering

• Hierarchical, conceptual clustering
• Previous work defined classification trees
 – Inadequate in relational domains
• Better hierarchical description: classification lattice
 – A cluster can have more than one parent
 – A parent can be at any level (not only one level above)
• Use iterative graph-based discovery
Clustering: DNA
Clustering: DNA

Coverage
- 61%
- 68%
- 71%
Learning Graph Grammars

• Graph grammar production: $S \rightarrow P$
 – S is a non-terminal
 – P is a graph containing terminals and/or non-terminals
 – $S \rightarrow P_1 \mid P_2 \mid \ldots \mid P_n$

• Recursive production: $S \rightarrow P \ S \mid P$
 – P linked to S via a single edge
 – Algorithm exponential in number of linking edges
Example Graph Grammar
Graph Grammar Learning

• SUBDUE Extensions (SubdueGL)
 – Each iteration results in a graph grammar production substructure
 – Production used to compress graph
 • Replace instances of right-hand side with new vertex labeled with non-terminal on left-hand side
 – Iterations continue until entire graph compressed to single non-terminal
SubdueGL Example

- Input graph
 - Edge labels: ‘t’, ‘s’, ‘next’
SubdueGL Example

- First production rule

\[S_1 \rightarrow x \quad y \quad S_1 \]

- Input graph parsed by first production

\[S_1 \rightarrow x \quad y \]

\[z \quad q \]

\[S_1 \]

\[x \quad y \]

\[z \quad q \]
SubdueGL Example

• Second and third production rules

\[S_2 \rightarrow a S_2 \quad \quad a \quad S_2 \]
\[b S_3 \quad b S_3 \]

\[S_3 \rightarrow c \quad d \quad e \quad f \]

• Input graph parsed by productions

\[S_2 \]
\[k \]
\[r \]
\[S_1 \]
\[S_1 \]
Graph-Based Supervised Learning

- Input now a set of positive graphs and a set of negative graphs
Graph-Based Supervised Learning

• Solution 1
 – Find substructure compressing positive graphs, but not negative graphs
 – Compress graphs and iterate until no further compression

• Problem
 – Compressing, instead of removing, partially-covered positive graphs leads to overly-specific hypotheses
Graph-Based Supervised Learning

• Solution 2
 – Find substructure *covering* (i.e., subgraph of) positive graphs, but not negative graphs
 – *Remove* covered positive graphs and iterate until all covered

• Substructure value = 1 - Error

\[
Error = \frac{\# \text{PosEgsNotCovered} + \# \text{NegEgsCovered}}{\# \text{PosEgs} + \# \text{NegEgs}}
\]
Supervised Learning: Cancer

- Chemical toxicity
- SUBDUE achieved 62% accuracy classifying carcinogenic vs. non-carcinogenic compounds
Application Domains

• Biochemical domains
 – Protein data
 – DNA data
 – Toxicology (cancer) data

• Spatial-temporal domains
 – Earthquake data
 – Aircraft Safety and Reporting System

• Web topology and search

• Social network analysis

• ...
Summary

• Multi-relational data mining and learning
• Graph-based relational learning
 – Discovery
 – Clustering
 – Graph grammar learning
 – Supervised learning
Future Directions

• Efficient graph-based learning from incremental streaming data
• Supervised graphs
 – All examples in one, connected graph
• Graph-based anomaly detection
• Improved scalability
 – Graph and subgraph isomorphism
Further Information

• SUBDUE Project
 – http://www.subdue.org