Outline

- Definition
- General-to-specific ordering over hypotheses
- Version spaces and the candidate elimination algorithm
- Inductive bias
Concept Learning

- **Definition**
 - Inferring a boolean-valued function from training examples of its input and output.

- **Example**
 - **Concept:**
 $$ f = x_1 \lor x_2 \overline{x}_3 $$
 - **Training examples:**

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: Enjoy Sport

- Learn a concept for predicting whether you will enjoy a sport based on the weather
- Training examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Sky</th>
<th>AirTemp</th>
<th>Humidity</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySport</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- What is the general concept?
Learning Task: Enjoy Sport

- Task T
 - Accurately predict enjoyment

- Performance P
 - Predictive accuracy

- Experience E
 - Training examples each with attribute values and class value (yes or no)
Representing Hypotheses

- Many possible representations
- Let hypothesis \(h \) be a conjunction of constraints on attributes
 - Hypothesis space \(H \) is the set of all possible hypotheses \(h \)
- Each constraint can be
 - Specific value (e.g., Water = Warm)
 - Don’t care (e.g., Water = ?)
 - No value is acceptable (e.g., Water = Ø)
- For example
 - \(<\text{Sunny, ?, ?, Strong, ?, Same}>\)
 - I.e., if (Sky=Sunny) and (Wind=Strong) and (Forecast=Same), then EnjoySport=Yes
Concept Learning Task

- **Given**
 - Instances X: Possible days
 - Each described by the attributes: Sky, AirTemp, Humidity, Wind, Water, Forecast
 - Target function $c: X \rightarrow \{0, 1\}$
 - Hypotheses H: Conjunctions of literals
 - E.g., <?, Cold, High, ?, ?, ?>
 - Training examples D
 - Positive and negative examples of the target function
 - $<x_1, c(x_1)>, \ldots, <x_m, c(x_m)>$

- **Determine**
 - A hypothesis h in H such that $h(x) = c(x)$ for all x in D
Terminology

- **Instances or instance space** X
 - Set of all possible input items
 - E.g., $x = \langle\text{Sunny, Warm, Normal, Strong, Warm, Same}\rangle$
 - $|X| = 3 \times 2 \times 2 \times 2 \times 2 \times 2 = 96$

- **Target concept** $c : X \rightarrow \{0, 1\}$
 - Concept or function to be learned
 - E.g., $c(x) = 1$ if EnjoySport = yes, $c(x) = 0$ if EnjoySport = no

- **Training examples** $D = \{\langle x, c(x) \rangle \}$, $x \in X$
 - Positive examples, $c(x) = 1$, members of target concept
 - Negative examples, $c(x) = 0$, non-members of target concept
Terminology

- **Hypothesis space H**
 - Set of all possible hypotheses
 - Depends on choice of representation
 - E.g., conjunctive concepts for EnjoySport
 - \((5 \times 4 \times 4 \times 4 \times 4 \times 4) = 5120\) syntactically distinct hypotheses
 - \((4 \times 3 \times 3 \times 3 \times 3 \times 3) + 1 = 973\) semantically distinct hypotheses
 - Any hypothesis with \(\emptyset\) classifies all examples as negative
 - Want \(h \in H\) such that \(h(x) = c(x)\) for all \(x \in X\)

- **Most general hypothesis**
 - \(<?, ?, ?, ?, ?, ?>\)

- **Most specific hypothesis**
 - \(<\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset>\)
Inductive learning hypothesis

Any hypothesis approximating the target concept well, over a sufficiently large set of training examples, will also approximate the target concept well for unobserved examples.
Concept Learning as Search

- Learning viewed as a search through hypothesis space H for a hypothesis consistent with the training examples.
- General-to-specific ordering of hypotheses.
 - Allows more directed search of H.
General-to-Specific Ordering of Hypotheses

Instances X

Hypotheses H

$x_1 = \langle\text{Sunny, Warm, High, Strong, Cool, Same}\rangle$

$x_2 = \langle\text{Sunny, Warm, High, Light, Warm, Same}\rangle$

$h_1 = \langle\text{Sunny, ?, ?, Strong, ?, ?}\rangle$

$h_2 = \langle\text{Sunny, ?, ?, ?, ?, ?}\rangle$

$h_3 = \langle\text{Sunny, ?, ?, ?, Cool, ?}\rangle$
General-to-Specific Ordering of Hypotheses

- Hypothesis h_1 is more general than or equal to hypothesis h_2 iff $\forall x \in X, h_1(x)=1 \iff h_2(x)=1$

- Written $h_1 \geq_g h_2$

- h_1 strictly more general than h_2 ($h_1 >_g h_2$) when $h_1 \geq_g h_2$ and $h_2 \not\geq_g h_1$
 - Also implies $h_2 \leq_g h_1$, h_2 more specific than h_1

- Defines partial order over H
Finding Maximally-Specific Hypothesis

- Find the most specific hypothesis covering all positive examples
- Hypothesis h covers positive example x if $h(x) = 1$
- Find-S algorithm
Find-S Algorithm

- Initialize h to the most specific hypothesis in H

- For each positive training instance x
 - For each attribute constraint a_i in h
 - If the constraint a_i in h is satisfied by x
 - Then do nothing
 - Else replace a_i in h by the next more general constraint that is satisfied by x

- Output hypothesis h
Find-S Example

Instances X

Hypotheses H

\[x_1 = \langle \text{Sunny} \text{, Warm} \text{, Normal} \text{, Strong} \text{, Warm} \text{, Same} \rangle, + \]
\[x_2 = \langle \text{Sunny} \text{, Warm} \text{, High} \text{, Strong} \text{, Warm} \text{, Same} \rangle, + \]
\[x_3 = \langle \text{Rainy} \text{, Cold} \text{, High} \text{, Strong} \text{, Warm} \text{, Change} \rangle, - \]
\[x_4 = \langle \text{Sunny} \text{, Warm} \text{, High} \text{, Strong} \text{, Cool} \text{, Change} \rangle, + \]

\[h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle \]
\[h_1 = \langle \text{Sunny} \text{, Warm} \text{, Normal} \text{, Strong} \text{, Warm} \text{, Same} \rangle \]
\[h_2 = \langle \text{Sunny} \text{, Warm} \text{, ?} \text{, Strong} \text{, Warm} \text{, Same} \rangle \]
\[h_3 = \langle \text{Sunny} \text{, Warm} \text{, ?} \text{, Strong} \text{, Warm} \text{, Same} \rangle \]
\[h_4 = \langle \text{Sunny} \text{, Warm} \text{, ?} \text{, Strong} \text{, ?} \text{, ?} \rangle \]
Find-S Algorithm

- Will h ever cover a negative example?
 - No, if $c \in H$ and training examples consistent

- Problems with Find-S
 - Cannot tell if converged on target concept
 - Why prefer the most specific hypothesis?
 - Handling inconsistent training examples due to errors or noise
 - What if more than one maximally-specific consistent hypothesis?
Version Spaces

- Hypothesis h is **consistent** with training examples D iff $h(x) = c(x)$ for all $<x, c(x)> \in D$

- **Version space** is all hypotheses in H consistent with D
 - $VS_{H,D} = \{h \in H \mid \text{consistent}(h, D)\}$
Representing Version Spaces

- The **general boundary** G of version space $VS_{H,D}$ is the set of its maximally general members.
- The **specific boundary** S of version space $VS_{H,D}$ is the set of its maximally specific members.
- Every member of the version space lies in or between these members.
 - “Between” means more specific than G and more general than S.
 - Thm. 2.1. Version space representation theorem.
- So, version space can be represented by just G and S.
Version space resulting from previous four EnjoySport examples.
Finding the Version Space

- **List-Then-Eliminate**
 - $VS = \text{list of every hypothesis in } H$
 - For each training example $<x, c(x)> \in D$
 - Remove from VS any h where $h(x) \neq c(x)$
 - Return VS

- Impractical for all but most trivial H's
Candidate Elimination Algorithm

- Initialize G to the set of maximally general hypotheses in H
- Initialize S to the set of maximally specific hypotheses in H
- For each training example d, do
 - If d is a positive example ...
 - If d is a negative example ...
Candidate Elimination Algorithm

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 - Remove \(s \) from \(S \)
 - Add to \(S \) all minimal generalizations \(h \) of \(s \) such that
 - \(h \) is consistent with \(d \), and
 - some member of \(G \) is more general than \(h \)
 - Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)
Candidate Elimination Algorithm

- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and
 - some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G
Example

Training examples:

1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes
Example (cont.)

\[S_2, S_3: \{ <\text{Sunny}, \text{Warm}, ?, \text{Strong}, \text{Warm}, \text{Same}> \} \]

\[G_2: \{ <?, ?, ?, ?, ?> \} \]

Training Example:

3. \(<\text{Rainy, Cold, High, Strong, Warm, Change}>, \text{EnjoySport=} No\)
Example (cont.)

\[S_3: \{ <\text{Sunny, Warm, ?}, \text{Strong, Warm, Same}> \} \]

\[S_4: \{ <\text{Sunny, Warm, ?}, \text{Strong, ?}, ?> \} \]

\[G_4: \{ <\text{Sunny, ?}, ?> <?, \text{Warm, ?}, ?> \} \]

\[G_3: \{ <\text{Sunny, ?}, ?> <?, \text{Warm, ?}, ?> <?, ?, ?, \text{Same}> \} \]

Training Example:

4. \(<\text{Sunny, Warm, High, Strong, Cool, Change}>, \text{EnjoySport} = \text{Yes}>\)
Example (cont.)

\[S: \{\text{Sunny, Warm, ?}, \text{Strong, ?}, ?\} \]

\[G: \{\text{Sunny, ?}, \text{?}, \text{?}, \text{?}, \text{?}, \text{?}\}, \text{?}, \text{Warm}, \text{?}, \text{?}, \text{?}, \text{?}\} \]
Version Spaces and the
Candidate Elimination Algorithm

- Will CE converge to correct hypothesis?
 - Yes, if no errors and target concept in H
 - Convergence: $S = G = \{h_{\text{final}}\}$
 - Otherwise, eventually $S = G = \{\}$

- Final VS independent of training sequence

- G can grow exponentially in $|D|$, even for conjunctive H
Version Spaces and the Candidate Elimination Algorithm

- Which training example requested next?
 - Learner may query oracle for example’s classification
 - Ideally, choose example eliminating half of VS
 - Need $\log_2|VS|$ examples to converge
Which Training Example Next?

S: \{<\text{Sunny}, \text{Warm}, ?, \text{Strong}, ?, ?>\}

\begin{itemize}
\item <\text{Sunny}, ?, ?, \text{Strong}, ?, ?>
\item <\text{Sunny}, \text{Warm}, ?, ?, ?, ?>
\item <?, \text{Warm}, ?, \text{Strong}, ?, ?>
\end{itemize}

<\text{Sunny}, \text{Cold}, \text{Normal}, \text{Strong}, \text{Cool}, \text{Change}> ?
<\text{Sunny}, \text{Warm}, \text{High}, \text{Light}, \text{Cool}, \text{Change}> ?
Using VS to Classify New Example

S:
{<Sunny, Warm, ?, Strong, ?, ?>}

G:

<Sunny, Warm, Normal, Strong, Cool, Change> ?
<Rainy, Cold, Normal, Light, Warm, Same> ?
<Sunny, Warm, Normal, Light, Warm, Same> ?
<Sunny, Cold, Normal, Strong, Warm, Same> ?
Using VS to Classify New Example

- How to use partially learned concepts
 - I.e., $|VS| > 1$
- If all of S predict positive, then positive
- If all of G predict negative, then negative
- If half and half, then don’t know
- If majority of hypotheses in VS say positive (negative), then positive (negative) with some confidence
Inductive Bias

- How does the choice for H affect learning performance?
- Biased hypothesis space
 - EnjoySport H cannot learn constraint [Sky = Sunny or Cloudy]
 - How about $H = \text{every possible hypothesis}$?
Unbiased Learner

- $H = \text{every teachable concept (power set of } X)$

 - E.g., EnjoySport | $H | = 2^{96} = 10^{28}$ (only 973 by previous H, biased!)

- $H' = \text{arbitrary conjunctions, disjunctions or negations of hypotheses from previous } H$

 - E.g., [Sky = Sunny or Cloudy] \rightarrow <Sunny,?,?,?,?,??> or <Cloudy,?,?,?,?,?,?,???>
Unbiased Learner

- Problems using H'
 - $S = \text{disjunction of positive examples}$
 - $G = \text{negated disjunction of negative examples}$
 - Thus, no generalization
 - Each unseen instance covered by exactly half of VS
Unbiased Learner

- Bias-free learning is futile
- Fundamental property of inductive learning
 - Learners that make no a priori assumptions about the target concept have no rational basis for classifying unseen instances
Inductive Bias

- Informally
 - Any preference on the space of all possible hypotheses other than consistency with training examples

- Formally
 - Set of assumptions B such that the classification of an unseen instance x by a learner L on training data D can be inferred deductively

- E.g., inductive bias for CE:
 - $B = \{(c \in H)\}$
 - Classification only by unanimous decision of VS
Inductive Bias

Inductive system

Candidate
Elimination
Algorithm

Using Hypothesis
Space \(H \)

Classification of
new instance, or
"don’t know"

Training examples

New instance

Equivalent deductive system

Theorem Prover

Classification of
new instance, or
"don’t know"

Training examples

New instance

Assertion "\(H \) contains
the target concept"

Inductive bias
made explicit
Inductive Bias

- Permits comparison of learners
 - Rote learner
 - Store examples; classify x iff matches previously observed example
 - No bias
 - CE
 - $c \in H$
 - Find-S
 - $c \in H$
 - $c(x) = 0$ for all instances not covered
WEKA’s ConjunctiveRule Classifier

- Learns rule of the form
 - If A1 and A2 and … An, Then class = c
 - A’s are inequality constraints on attributes
 - A’s chosen based on information gain criterion
 - i.e., which constraint, when added, best improves classification

- Lastly, performs reduced-error pruning
 - Remove A’s from rule as long as reduces error on pruning set

- If instance x not covered by rule, then $c(x) =$ majority class of training examples not covered by rule

- Inductive bias?
Summary

- Concept learning as search
- General-to-specific ordering
- Version spaces
- Candidate elimination algorithm
- S and G boundary sets characterize learner’s uncertainty
- Learner can generate useful queries
- Inductive leaps possible only if learner is biased