Decision Tree Learning
Mitchell, Chapter 3

CptS 570 Machine Learning
School of EECS
Washington State University
Outline

- Decision tree representation
- ID3 learning algorithm
- Entropy and information gain
- Overfitting
- Enhancements
Decision Tree for *PlayTennis*

```
Outlook
  Sunny
    Humidity
      High
        No
      Normal
        Yes
  Overcast
    Yes
  Rain
    Wind
      Strong
        No
      Weak
        Yes
```
Decision Trees

- Decision tree representation
 - Each internal node test an attribute
 - Each branch corresponds to attribute value
 - Each leaf node assigns a classification

- How would we represent:
 - \land, \lor, XOR
 - $(A \land B) \lor (C \land \neg D \land E)$
 - M of N
When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data
- Examples:
 - Equipment or medical diagnosis
 - Credit risk analysis
 - Modeling calendar scheduling preferences
Top-Down Induction of Decision Trees

Main loop (ID3, Table 3.1):

- $A \leftarrow$ the “best” decision attribute for next node
- Assign A as decision attribute for node
- For each value of A, create new descendant of node
- Sort training examples to leaf nodes
- If training examples perfectly classified
 - Then STOP
 - Else iterate over new leaf nodes
Which Attribute is Best?

\[\begin{align*}
A1 &= \text{?} \\
\text{[29+, 35-]} & \quad \text{t} \\
\text{[21+, 5-]} & \quad \text{f} \\
\text{[8+, 30-]} &
\end{align*} \]

\[\begin{align*}
A2 &= \text{?} \\
\text{[29+, 35-]} & \quad \text{t} \\
\text{[18+, 33-]} & \quad \text{f} \\
\text{[11+, 2-]} &
\end{align*} \]
Entropy

- S is a sample of training examples
- p_\oplus is the proportion of positive examples in S
- p_\ominus is the proportion of negative examples in S
- Entropy measures the impurity of S
 - $\text{Entropy}(S) \equiv -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$
Entropy

- $\text{Entropy}(S) = \text{expected number of bits needed to encode class } (\oplus \text{ or } \ominus) \text{ of randomly drawn member of } S \text{ (under the optimal, shortest-length code)}$

- Why? Information theory
 - Optimal length code assigns $(- \log_2 p)$ bits to message having probability p

- So, expected number of bits to encode \oplus or \ominus of random member of S:
 - $p_\oplus (- \log_2 p_\oplus) + p_\ominus (- \log_2 p_\ominus)$
 - $\text{Entropy}(S) \equiv - p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$
Information Gain

- $Gain(S, A) = \text{expected reduction in entropy due to sorting on attribute } A$

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$
Training Examples: *PlayTennis*

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Selecting the Next Attribute

Which attribute is the best classifier?

Gain (S, Humidity)

\[
\begin{align*}
S: & \ [9+, 5-] \\
E &= 0.940 \\
\text{Humidity} \\
\text{High} & \quad \text{Normal} \\
[3+, 4-] & \quad [6+, 1-] \\
E &= 0.985 & E &= 0.592
\end{align*}
\]

Gain (S, Wind)

\[
\begin{align*}
S: & \ [9+, 5-] \\
E &= 0.940 \\
\text{Wind} \\
\text{Weak} & \quad \text{Strong} \\
[6+, 2-] & \quad [3+, 3-] \\
E &= 0.811 & E &= 1.00
\end{align*}
\]

\[
\begin{align*}
\text{Gain (S, Humidity)} &= .940 - (7/14).985 - (7/14).592 \\
&= .151
\end{align*}
\]

\[
\begin{align*}
\text{Gain (S, Wind)} &= .940 - (8/14).811 - (6/14)1.0 \\
&= .048
\end{align*}
\]
Selecting the Next Attribute

Which attribute should be tested here?

\[S_{\text{sunny}} = \{D1,D2,D8,D9,D11\} \]

\[\text{Gain} (S_{\text{sunny}}, \text{Humidity}) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970 \]

\[\text{Gain} (S_{\text{sunny}}, \text{Temperature}) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570 \]

\[\text{Gain} (S_{\text{sunny}}, \text{Wind}) = .970 - (2/5) 1.0 - (3/5) .918 = .019 \]
Hypothesis Space Search by ID3
Hypothesis Space Search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Does not keep all consistent hypotheses
- No backtracking
 - Local minima...
- Statistically-based search choices
 - Robust to noisy data...
- Inductive bias: “prefer shortest tree”
Inductive Bias in ID3

- Note H is the power set of instances X
 - Unbiased?
- Not really…
 - Preference for short trees with high information gain attributes near the root
- Bias is a *preference* for some hypotheses, rather than a *restriction* on the hypothesis space H
- Occam's razor
 - Prefer the shortest hypothesis that fits the data
Occam’s Razor

- Why prefer short hypotheses?
- Argument in favor:
 - Fewer short hypotheses than long hypotheses
 - Short hypothesis that fits data unlikely to be coincidence
 - Long hypothesis that fits data might be coincidence
- Argument opposed:
 - There are many ways to define small sets of hypotheses
 - E.g., all trees with a prime number of nodes that use attributes beginning with “Z”
 - What's so special about small sets based on the size of the hypothesis?
Overfitting in Decision Trees

- Consider adding noisy training example #15:
 - (<Sunny, Hot, Normal, Strong>, PlayTennis = No)
- What effect on earlier tree?
Overfitting

- Consider error of hypothesis h over
 - Training data: $\text{error}_{\text{train}}(h)$
 - Entire distribution D of data: $\text{error}_D(h)$

- Hypothesis $h \in H$ **overfits** the training data if there is an alternative hypothesis $h' \in H$ such that
 - $\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')$
 - $\text{error}_D(h) > \text{error}_D(h')$
Overfitting in Decision Tree Learning
Avoiding Overfitting

- How can we avoid overfitting?
 - Stop growing when data split not statistically significant
 - Grow full tree, then post-prune

- How to select “best” tree:
 - Measure performance over training data
 - Measure performance over separate validation data set

- MDL
 - Minimize $size(tree) + size(misclassifications(tree))$
Reduced-Error Pruning

- Split data into *training* and *validation* set
- Do until further pruning is harmful:
 - Evaluate impact on *validation* set of pruning each possible node (plus those below it)
 - Greedily remove the one that most improves *validation* set accuracy
- Produces smallest version of most accurate subtree
- What if data is limited?
Effect of Reduced-Error Pruning

![Graph showing the effect of reduced-error pruning on accuracy over the size of the tree (number of nodes). The graph includes curves for accuracy on training data, accuracy on test data, and accuracy on test data during pruning.](image)
Rule Post-Pruning

- Generate decision tree, then
 - Convert tree to equivalent set of rules
 - Prune each rule independently of others
 - Sort final rules into desired sequence for use
- Perhaps most frequently used method (e.g., C4.5)
Converting a Tree to Rules

If (Outlook=Sunny) \land (Humidity=High)
Then PlayTennis=No

If (Outlook=Sunny) \land (Humidity=Normal)
Then PlayTennis=Yes

\ldots
Continuous Valued Attributes

- Create a discrete attribute to test continuous values
 - Temperature = 82.5
 - (Temperature > 72.3) = true, false

<table>
<thead>
<tr>
<th>Temperature</th>
<th>40</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Problem:
- If attribute has many values, Gain will select it
- Imagine using Date = Jun_3_1996 as attribute

One approach: Use GainRatio instead

\[
\text{GainRatio}(S, A) \equiv \frac{\text{Gain}(S, A)}{\text{SplitInformation}(S, A)}
\]

\[
\text{SplitInformation}(S, A) \equiv -\sum_{i=1}^{\text{Values}(A)} \frac{|S_i|}{|S|} \log_2 \left(\frac{|S_i|}{|S|} \right)
\]

where \(S_i \) is the subset of \(S \) for which \(A \) has value \(v_i \)
Attributes with Costs

- Consider
 - Medical diagnosis, *BloodTest* has cost $150
 - Robotics, *Width_from_1ft* has cost 23 sec.

- How to learn a consistent tree with low expected cost?

- One approach: replace gain by
 - Tan and Schlimmer (1990)
 \[
 \frac{\text{Gain}^2(S,A)}{\text{Cost}(A)}
 \]
 - Nunez (1988)
 \[
 \frac{2^{\text{Gain}(S,A)} - 1}{(\text{Cost}(A) + 1)^w}
 \]
 - where $w \in [0,1]$ determines importance of cost
Unknown Attribute Values

- What if some examples missing values of A?
- Use training example anyway, sort through tree
 - If node n tests A, assign most common value of A among other examples sorted to node n
 - Assign most common value of A among other examples with same target value
 - Assign probability p_i to each possible value v_i of A
 - Assign fraction p_i of example to each descendant in tree
- Classify new examples in same fashion
Summary: Decision-Tree Learning

- Most popular symbolic learning method
- Learning discrete-valued functions
- Information-theoretic heuristic
- Handles noisy data
- Decision trees completely expressive
- Biased towards simpler trees
- $\text{ID3} \rightarrow \text{C4.5} \rightarrow \text{C5.0}$ (www.rulequest.com)
- $\text{J48 (WEKA)} \approx \text{C4.5}$