Kernel Machines

CptS 570 – Machine Learning
School of EECS
Washington State University
Kernel Machines

- Or, support vector machine (SVM)
- Discriminant-based method
 - Learn class boundaries
- Support vector consists of examples closest to boundary
- Kernel computes similarity between examples
 - Maps instance space to a higher-dimensional space where (hopefully) linear models suffice
- Choosing the right kernel is crucial
- Kernel machines among best-performing learners
Kernel Machines

- Likely to underfit using only hyperplanes
- But we can map the data to a nonlinear space and use hyperplanes there
 - $\Phi: \mathbb{R}^d \rightarrow \mathcal{F}$
 - $\mathbf{x} \rightarrow \Phi(\mathbf{x})$
Optimal Separating Hyperplane

\[\mathcal{X} = \{x^t, r^t\} \text{ where } r^t = \begin{cases} +1 & \text{if } x^t \in C_1 \\ -1 & \text{if } x^t \in C_2 \end{cases} \]

find \(w \) and \(w_0 \) such that
\[w^T x^t + w_0 \geq +1 \text{ for } r^t = +1 \]
\[w^T x^t + w_0 \leq -1 \text{ for } r^t = -1 \]
which can be rewritten as
\[r^t(w^T x^t + w_0) \geq +1 \]

- Note we want \(\geq +1 \), not \(\geq 0 \)
- Want instances some distance from hyperplane
Margin

- Distance from instance x^t to hyperplane $w^T x^t + w_0$
 \[
 \frac{|w^T x^t + w_0|}{\|w\|} \quad \text{or} \quad \frac{r^t(w^T x^t + w_0)}{\|w\|}
 \]

- Distance from hyperplane to closest instances is the margin
Optimal separating hyperplane is the one maximizing the margin

We want to choose w maximizing ρ such that

$$\frac{r^t(w^T x^t + w_0)}{\|w\|} \geq \rho, \forall t$$

Infinite number of solutions by scaling w

Thus, we choose solution minimizing $\|w\|

$$\min \frac{1}{2} \|w\|^2 \text{ subject to } r^t(w^T x^t + w_0) \geq +1, \forall t$$
Optimal Separating Hyperplane

\[
\min \frac{1}{2} \|w\|^2 \text{ subject to } r^t \left(w^T x^t + w_0 \right) \geq +1, \forall t
\]

- Quadratic optimization problem with complexity polynomial in \(d\) (#features)
- Kernel will eventually map \(d\)-dimensional space to higher-dimensional space
- Prefer complexity not based on \#dimensions
Optimal Separating Hyperplane

- Convert optimization problem to depend on number of training examples \(N \) (not \(d \))
 - Still polynomial in \(N \)
- But optimization will depend only on closest examples (support vector)
 - Typically \(\ll N \)
Lagrange Multipliers

- Rewrite quadratic optimization problem using Lagrange multipliers α^t, $1 \leq t \leq N$

$$\min \frac{1}{2} \|w\|^2 \text{ subject to } r^t (w^T x^t + w_0) \geq +1, \forall t$$

$$L_p = \frac{1}{2} \|w\|^2 - \sum_{t=1}^{N} \alpha^t \left[r^t (w^T x^t + w_0) - 1\right]$$

$$= \frac{1}{2} \|w\|^2 - \sum_{t=1}^{N} \alpha^t r^t (w^T x^t + w_0) + \sum_{t=1}^{N} \alpha^t$$

- Minimize L_p
Equivalelently, we can maximize L_p subject to the constraints:

$$\frac{\partial L_p}{\partial w} = 0 \Rightarrow w = \sum_{t=1}^{N} \alpha_t r^t x^t$$

$$\frac{\partial L_p}{\partial w_0} = 0 \Rightarrow \sum_{t=1}^{N} \alpha_t r^t = 0$$

Plugging these into L_p ...
Lagrange Multipliers

\[L_d = \frac{1}{2} (w^T w) - w^T \sum_t \alpha^t r^t x^t - w_0 \sum_t \alpha^t r^t + \sum_t \alpha^t \]

\[= -\frac{1}{2} (w^T w) + \sum_t \alpha^t \]

\[= -\frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s (x^t)^T x^s + \sum_t \alpha^t \]

subject to \(\sum_t \alpha^t r^t = 0 \) and \(\alpha^t \geq 0, \forall t \)

- Maximize \(L_d \) with respect to \(\alpha^t \) only
- Complexity \(O(N^3) \)
Support Vector Machine

- Most $\alpha^t = 0$
 - I.e., $r^t(w^T x^t + w_0) > 1$ (x^t lie outside margin)

- Support vectors: x^t such that $\alpha^t > 0$
 - I.e., $r^t(w^T x^t + w_0) = 1$ (x^t lie on margin)

- $w = \sum_t \alpha^t r^t x^t$

- $w_0 = r^t - w^T x^t$ for any support vector x^t
 - Typically average over all support vectors

- Resulting discriminant is called the support vector machine (SVM)
Support Vector Machine

O = support vectors

margin
Soft Margin Hyperplane

- Data not linearly separable
- Find hyperplane with least error
- Define slack variables $\xi^t \geq 0$ storing deviation from the margin

\[r^t (w^T x^t + w_0) \geq 1 - \xi^t \]
(a) Correctly classified example far from margin ($\xi^t = 0$)
(b) Correctly classified example on the margin ($\xi^t = 0$)
(c) Correctly classified example, but inside the margin ($0 < \xi^t < 1$)
(d) Incorrectly classified example ($\xi^t \geq 1$)

Soft error = $\sum_{t}^{\xi^t}$
Soft Error

O = support vectors

margin
Soft Margin Hyperplane

- Lagrangian equation with slack variables

\[L_p = \frac{1}{2} \|w\|^2 + C \sum_t \xi^t - \sum_t \alpha^t \left[r^t (w^T x^t + w_0) - 1 + \xi^t \right] - \sum_t \mu^t \xi^t \]

- C is penalty factor
- \(\mu^t \geq 0 \), new set of Lagrange multipliers
- Want to minimize \(L_p \)
Minimize L_p by setting derivatives to zero

$$\frac{\partial L_p}{\partial w} = 0 \Rightarrow w = \sum_{t=1}^{N} \alpha^t r^t x^t$$

$$\frac{\partial L_p}{\partial w_0} = 0 \Rightarrow \sum_{t=1}^{N} \alpha^t r^t = 0$$

$$\frac{\partial L_p}{\partial \xi^t} = 0 \Rightarrow C - \alpha^t - \mu^t = 0$$

Plugging these into L_p yields dual L_d

Maximize L_d with respect to α^t
Soft Margin Hyperplane

\[L_d = -\frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s (x^t)^T x^s + \sum_t \alpha^t \]

subject to \(\sum_t \alpha^t r^t = 0 \) and \(0 \leq \alpha^t \leq C, \forall t \)

- Quadratic optimization problem
- Support vectors have \(\alpha^t > 0 \)
 - Examples on margin: \(\alpha^t < C \)
 - Examples inside margin or misclassified: \(\alpha^t = C \)
C is a regularization parameter

- High C → high penalty for non-separable examples (overfit)
- Low C → less penalty (underfit)
- Determine using validation set (C=1 typical)

\[L_d = -\frac{1}{2} \sum_t \sum_s \alpha_t \alpha_s r_t r_s (x^t)^T x^s + \sum_t \alpha_t \]

subject to \(\sum_t \alpha_t r_t = 0 \) and \(0 \leq \alpha_t \leq C, \forall t \)
Kernels

- To use previous approaches, data must be near linearly separable
- If not, perhaps a transformation $\phi(x)$ will help
- $\phi(x)$ are basis functions
Kernels

- Transform d-dimensional \mathbf{x} space to k-dimensional \mathbf{z} space using basis functions $\phi(\mathbf{x})$

\[\mathbf{z} = \phi(\mathbf{x}) \quad \text{where} \quad z_j = \phi_j(\mathbf{x}) \quad j=1,\ldots,k \]

\[g(\mathbf{z}) = \mathbf{w}^T \mathbf{z} \]

\[g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \sum_{j=1}^{k} w_j \phi_j(\mathbf{x}) \]

- Instead of w_0, assume $z_1 = \phi_1(\mathbf{x}) \equiv 1$
Soft Margin with Kernels

\[L_p = \frac{1}{2} \|w\|^2 + C \sum_t \xi_t - \sum_t \alpha_t [r^T w^T \phi(x^t) - 1 + \xi_t] - \sum_t \mu_t \xi_t \]

\[L_d = -\frac{1}{2} \sum_t \sum_s \alpha_t \alpha_s r^t r^s \phi(x^t)^T \phi(x^s) + \sum_t \alpha_t \]

subject to \(\sum_t \alpha_t r^t = 0 \) and \(0 \leq \alpha_t \leq C, \forall t \)

- Replace inner product of basis functions \(\phi(x^t)^T \phi(x^s) \) with kernel function \(K(x^t, x^s) \)

\[L_d = -\frac{1}{2} \sum_t \sum_s \alpha_t \alpha_s r^t r^s K(x^t, x^s) + \sum_t \alpha_t \]
Kernel Functions

- Kernel $K(x^t, x^s)$ computes z-space product $\phi(x^t)^T \phi(x^s)$ in x-space

\[w = \sum_t \alpha^t r^t z^t = \sum_t \alpha^t r^t \phi(x^t) \]

\[g(x) = w^T \phi(x) = \sum_t \alpha^t r^t \phi(x^t)^T \phi(x) \]

\[g(x) = \sum_t \alpha^t r^t K(x^t, x) \]

- Matrix of kernel values K, where $K_{ts} = K(x^t, x^s)$, called the Gram matrix
- K should be symmetric and positive semidefinite
Kernel Functions

- Polynomial kernel of degree \(q \)
 \[
 K(x^t, x) = (x^T x^t + 1)^q
 \]
- If \(q = 1 \), then use original features
- For example, when \(q = 2 \) and \(d = 2 \)
 \[
 K(x, y) = (x^T y + 1)^2
 = (x_1 y_1 + x_2 y_2 + 1)^2
 = 1 + 2x_1 y_1 + 2x_2 y_2 + 2x_1 x_2 y_1 y_2 + x_1^2 y_1^2 + x_2^2 y_2^2
 \]
 \[
 \phi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1 x_2, x_1^2, x_2^2]^T
 \]
Kernel Functions

- Polynomial kernel of degree 2

O = support vectors

margin
Kernel Functions

- Radial basis functions (Gaussian kernel)

\[K(x^t, x) = \exp \left[-\frac{||x^t - x||^2}{2s^2} \right] \]

- x^t is the center
- s is the radius
- Larger s implies smoother boundaries
Kernel Functions: Radial Basis Functions

(a) $s^2 = 2$

(b) $s^2 = 0.5$

(c) $s^2 = 0.25$

(d) $s^2 = 0.1$
Kernel Functions

- Sigmoidal functions

\[K(x^t, x) = \tanh(2x^T x^t + 1) \]
Defining Kernels

- Kernel $K(x,y)$ increases with similarity between x and y
- Prior knowledge can be included in the kernel function
 - E.g., training examples are documents
 - $K(D_1,D_2) = \# \text{ shared words}$
 - E.g., training examples are strings (e.g., DNA)
 - $K(S_1,S_2) = \frac{1}{\text{edit distance between } S_1 \text{ and } S_2}$
 - Edit distance is the number of insertions, deletions and/or substitutions to transform S_1 into S_2
Defining Kernels

- E.g., training examples are nodes in a graph (e.g., social network)
- \(K(N_1, N_2) = \frac{1}{\text{length of shortest path connecting nodes}} \)
- \(K(N_1, N_2) = \# \text{paths connecting nodes} \)
- Diffusion kernel
Defining Kernels

- Training examples are graphs, not feature vectors
 - E.g., carcinogenic vs. non-carcinogenic chemical structures
- Compare substructures of graphs
 - E.g., walks, paths, cycles, trees, subgraphs
- \(K(G_1, G_2) = \) number of identical random walks in both graphs
- \(K(G_1, G_2) = \) number of subgraphs shared by both graphs
Combining Kernels

- Training data from multiple modalities (e.g., biometrics, social network, audio/visual)
- Construct new kernels by combining simpler kernels
- If \(K_1(x,y) \) and \(K_2(x,y) \) are valid kernels, and \(c \) is a constant, then

\[
K(x,y) = \begin{cases}
 cK(x,y) \\
 K_1(x,y) + K_2(x,y) \\
 K_1(x,y)K_2(x,y)
\end{cases}
\]

- are valid kernels
Combining Kernels

- Adaptive kernel combination

\[K(x, y) = \sum_{i=1}^{m} \eta_i K_i(x, y) \]

\[L_d = \sum_{t} \alpha^t - \frac{1}{2} \sum_{t} \sum_{s} \alpha^t \alpha^s r^t r^s \sum_{i} \eta_i K_i(x^t, x^s) \]

\[g(x) = \sum_{t} \alpha^t r^t \sum_{i} \eta_i K_i(x^t, x) \]

- Learn both \(\alpha^t \)s and \(\eta_i \)s
K > 2 Classes

- Learn K different kernel machines $g_i(x)$
 - Each uses one class as positive, remaining classes as negative
 - Choose class i such that $i = \text{argmax}_j g_j(x)$
 - Best approach in practice
K>2 Classes

- Learn $K(K-1)/2$ kernel machines
 - Each uses one class as positive and another class as negative
 - Easier (faster) learning per kernel machine
$K>2$ Classes

- Learn all margins at once

$$\min \frac{1}{2} \sum_{i=1}^{K} \|w_i\|^2 + C \sum_i \sum_t \xi_i^t$$

subject to

$$w_{z_t^t}^T x_t + w_{z_t^0} \geq w_i^T x_t + w_{i0} + 2 - \xi_i^t, \forall i \neq z_t, \xi_i^t \geq 0$$

- z_t^t is the class index of x_t

- K^*N variables to optimize (expensive)
SVM Regression

- Normally, we would use squared error
 \[e(r^t, f(x^t)) = [r^t - f(x^t)]^2 \]
 \[f(x) = w^T x + w_0 \]

- For SVM, we use \(\varepsilon \)-sensitive loss
 \[e_\varepsilon(r^t, f(x^t)) = \begin{cases}
 0 & \text{if } |r^t - f(x^t)| < \varepsilon \\
 |r^t - f(x^t)| - \varepsilon & \text{otherwise}
\end{cases} \]
 - Tolerate errors up to \(\varepsilon \)
 - Errors beyond \(\varepsilon \) have only linear effect
SVM Regression

- Use slack variables to account for deviations beyond ε
 - ξ^+_t for positive deviations
 - ξ^-_t for negative deviations

$$\min \frac{1}{2} \|w\|^2 + C \sum_t (\xi^+_t + \xi^-_t)$$

Subject to

$$r^t - \left(w^T x + w_0 \right) \leq \varepsilon + \xi^+_t$$

$$\left(w^T x + w_0 \right) - r^t \leq \varepsilon + \xi^-_t$$

$$\xi^+_t, \xi^-_t \geq 0$$
SVM Regression

\[
L_d = -\frac{1}{2} \sum_t \sum_s \left(\alpha_+^t - \alpha_-^t \right) \left(\alpha_+^s - \alpha_-^s \right) (x^t)^T x^s
\]

\[-\varepsilon \sum_t (\alpha_+^t + \alpha_-^t) - \sum_t r^t (\alpha_+^t - \alpha_-^t)\]

subject to

\[0 \leq \alpha_+^t \leq C, \quad 0 \leq \alpha_-^t \leq C, \quad \sum_t (\alpha_+^t - \alpha_-^t) = 0\]

- Non-support vectors (inside margin): \(\alpha_+^t = \alpha_-^t = 0 \)
- Support vectors
 - \(\otimes \) on the margin: \(0 < \alpha_+^t < C \) or \(0 < \alpha_-^t < C \)
 - \(\blacklozenge \) outside margin (outlier): \(\alpha_+^t = C \) or \(\alpha_-^t = C \)
SVM Regression
SVM Regression

- Fitted line
- \(f(x) \) is weighted sum of support vectors

\[
 f(x) = w^T x + w_0 = \sum_t (\alpha_+^t - \alpha_-^t)(x^t)^T x + w_0
\]

\[
 w = \sum_t (\alpha_+^t - \alpha_-^t)x^t
\]

- Average \(w_0 \) over:

\[
 r^t = w^T x^t + w_0 + \varepsilon, \quad \text{if} \ 0 < \alpha_+^t < C
\]

\[
 r^t = w^T x^t + w_0 - \varepsilon, \quad \text{if} \ 0 < \alpha_-^t < C
\]
Kernel Regression

\[L_d = -\frac{1}{2} \sum_t \sum_s (\alpha_+^t - \alpha_-^t)(\alpha_+^s - \alpha_-^s)K(x^t, x^s) \]

\[-\varepsilon \sum_t (\alpha_+^t + \alpha_-^t) - \sum_t r^t(\alpha_+^t - \alpha_-^t) \]

subject to

\[0 \leq \alpha_+^t \leq C, \quad 0 \leq \alpha_-^t \leq C, \quad \sum_t (\alpha_+^t - \alpha_-^t) = 0 \]

\[f(x) = w^T x + w_0 = \sum_t (\alpha_+^t - \alpha_-^t)K(x^t, x) + w_0 \]
Kernel Regression

- Polynomial (quadratic) kernel
- Gaussian kernel
WEKA Kernel Machines

- Classification: SMO
- Regression: SMOreg
- Sequential Minimal Optimization (SMO)
- Kernels
 - Polynomial
 - RBF
 - String
Summary: Kernel Machines

- Seek optimal separating hyperplane
- Support vector machine (SVM) finds hyperplane using only closest examples
- Kernel function allows SVM to operate in higher dimensions
- Kernel regression
- Choosing correct kernel is crucial
- Kernel machines among best–performing learners