1. Consider a data structure that inserts keys in constant time, except that after every 10th key is inserted, the data structure reorganizes itself using a $O(n)$ algorithm, where n is the number of keys currently in the data structure. In other words the cost c_i of the i^{th} operation is as follows.

$$c_i = \begin{cases}
 i & \text{if } i \mod 10 = 0 \\
 1 & \text{otherwise}
\end{cases}$$

(a) (4 points) Use the aggregate method to show that the amortized cost of each operation is still $O(n)$.
(b) (4 points) Suppose the following amortized costs are defined in order to apply the accounting method. Are these valid? Why or why not?

\[\hat{c}_i = \begin{cases}
1 & \text{if } i \mod 10 = 0 \\
2 & \text{otherwise}
\end{cases} \]

(c) (2 points) Give a potential function \(\Phi(D_i) \) that satisfies the constraints such that the amortized cost is an upper bound on the actual cost (i.e., \(\Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \) for all \(i \)).
2. (4 points) Show any valid binomial heap containing the keys 3, 5, 7, 10, 12, 15.

3. (4 points) Show the Fibonacci heap after executing \texttt{EXTRACTMIN} on the following Fibonacci heap.
4. (4 points) Show the final disjoint-set data structure after executing all of the operations below, using the forest of trees representation with the union by rank and path compression heuristics.

```plaintext
for i = 1 to 10
    MakeSet(i)
Union(1, 2)
Union(3, 4)
Union(5, 6)
Union(7, 8)
Union(9, 10)
Union(1, 3)
Union(4, 6)
Union(7, 9)
FindSet(2)
FindSet(10)
```

5. (3 points) Execute DFS on the following graph by labeling vertices with their discover and finish times, considering vertices in alphabetic order when iterating over a set of vertices.