CSE 5311 Section 003 Fall 2004

Quiz 4 Solution

October 20, 2004

This is a closed-book, closed-notes, closed-computer, closed-neighbor quiz.

1. Consider a data structure that inserts keys in constant time, except that after every 10th key is inserted, the data structure reorganizes itself using a $O(n)$ algorithm, where n is the number of keys currently in the data structure. In other words the cost c_i of the i^{th} operation is as follows.

$$c_i = \begin{cases}
 i & \text{if } i \mod 10 = 0 \\
 1 & \text{otherwise}
\end{cases}$$

(a) (4 points) Use the aggregate method to show that the amortized cost of each operation is still $O(n)$.

The cost of n operations can be expressed as:

$$\text{cost of } n \text{ operations} = (n - \left\lfloor \frac{n}{10} \right\rfloor) + \sum_{i=1}^{\left\lfloor \frac{n}{10} \right\rfloor} 10i$$

$$\leq n - \frac{n}{10} + 10 \sum_{i=1}^{\left\lfloor \frac{n}{10} \right\rfloor} i$$

$$= \frac{9}{10} n + 10 \left(\frac{\left\lfloor \frac{n}{10} \right\rfloor (\frac{n}{10} + 1)}{2} \right)$$

$$= \frac{9}{10} n + \frac{n^2}{20} + \frac{n}{2}$$

$$= \frac{n^2}{20} + \frac{14}{10} n$$

$$= O(n^2)$$

Thus, \(\hat{c}_i = \frac{O(n^2)}{n} = O(n) \)
(b) (4 points) Suppose the following amortized costs are defined in order to apply the accounting method. Are these valid? Why or why not?

\[
\hat{c}_i = \begin{cases}
1 & \text{if } i \mod 10 = 0 \\
2 & \text{otherwise}
\end{cases}
\]

These amortized costs are not valid, because credit becomes negative. For example, consider operation \(i = 20 \):
- Credit for operations 1-9 and 11-19: \(2(18) - 18 = 18 \)
- Operation 10 uses 9 credits
- Operation 20 uses 19 credits
- Total credit after operation 20: \(18 - 28 = -10 \)

(c) (2 points) Give a potential function \(\Phi(D_i) \) that satisfies the constraints such that the amortized cost is an upper bound on the actual cost (i.e., \(\Phi(D_0) = 0 \) and \(\Phi(D_i) \geq 0 \) for all \(i \)).

\[\Phi(D_i) = i\]

2. (4 points) Show any valid binomial heap containing the keys 3, 5, 7, 10, 12, 15.

There are several correct answers, but all have the following structure and follow the parent less than child ordering.

```
3
  / \  \
5   7
  /  /  /
10 12 15
```
3. (4 points) Show the Fibonacci heap after executing EXTRACTMIN on the following Fibonacci heap.
4. (4 points) Show the final disjoint-set data structure after executing all of the operations below, using the forest of trees representation with the union by rank and path compression heuristics.

```
for i = 1 to 10
    MakeSet(i)
    Union(1, 2)
    Union(3, 4)
    Union(5, 6)
    Union(7, 8)
    Union(9, 10)
    Union(1, 3)
    Union(4, 6)
    Union(7, 9)
    FindSet(2)
    FindSet(10)
```

Below is the disjoint set, where the rank of each node is shown next to the node.
5. (3 points) Execute DFS on the following graph by labeling vertices with their discover and finish times, considering vertices in alphabetic order when iterating over a set of vertices.

![Graph with discover and finish times]

The discover and finish times have been added to the original graph above.