B-Trees

B-Trees are useful in the following cases:

The number of objects is too large to fit in memory.

Need external storage.

Disk accesses are slow, thus need to minimize the number of disk accesses.

Red-Black trees are not good in these situations, only retrieves one key at a time from memory.

B-Trees

- B-Trees are balanced, like RB trees.
- They have a large number of children (large branching factor), unlike RB trees.
- The branching factor is determined by the size of disk transfers (page size).
- Each object (node) referenced requires a DiskRead.
- Each object modified requires a DiskWrite.
- The root of the tree is kept in memory at all times.
- Insert, Delete, Search = $O(h)$, where h is the height of the tree. $O(lgn)$, though much less in reality ($log_{BF}n$).
Properties of B-Trees

1. Node x

\[n(x) = \# \text{keys stored here} \]
\[\text{leaf}(x) = \text{true if leaf node} \]

\[\begin{array}{ccccccc}
\text{key}_1(x) & \text{key}_2(x) & \text{key}_3(x) & \text{key}_4(x) & \cdots & \text{key}_{n(x)}(x) \\
\text{c}_1(x) & \text{c}_2(x) & \text{c}_3(x) & \text{c}_4(x) & \cdots & \text{c}_{n(x)+1}(x) \\
\text{keys } k_1 & \text{keys } k_2 & \text{keys } k_3 & \text{keys } k_4 & \cdots & \text{keys } k_{n(x)+1} \\
\end{array} \]

\[k_1 \leq \text{key}_1(x) \leq k_2 \leq \text{key}_2(x) \leq \cdots \leq \text{key}_{n(x)}(x) \leq k_{n(x)+1} \]
Properties of B-Trees

2. Every leaf has the same depth equal to the height of the tree.

3. The number of keys is bounded in terms of the minimum degree \(t \) \(\geq 2 \).

\[
\begin{align*}
n(x) & \geq t-1 \text{ (except root } \geq 1) \\
\#children(x) & \geq t \text{ (except root } \geq 0), \text{ leaves } = 0 \\
n(x) & \leq 2t - 1 \\
\#children & \leq 2t \text{ (except leaves which } = 0) \\
\text{If } n(x) = 2t - 1 \text{ then } n \text{ is a } & \\
\end{align*}
\]

For example, if \(t = 3 \):

- Root: \(n(x) = \ldots \), \#children = \ldots
- Internal node: \(n(x) = \ldots \), \#children = \ldots
- Leaf: \(n(x) = \ldots \), \#children = \ldots

\[\frac{n+1}{2} \]

What is \(h \) in terms of \(n \) and \(t \)?

Theorem 19.1

Given \(n \geq 1 \), \(t \geq 2 \), B-Tree of height \(h \) and minimum degree \(t \), and number of keys \(n \),

\[
h \leq \log_t \frac{n+1}{2}
\]

Proof:

\(n \geq \) minimum \#nodes in tree of height \(h \) and minimum degree \(t \)

The minimum \#nodes means root has one key (two children) and other nodes have \(t-1 \) (minimum) keys.
\[= 1 \text{ key at root } +
2(t-1) \text{ at depth } 1 +
2t(t-1) \text{ at depth } 2 +
2t^2(t-1) \text{ at depth } 3 + \ldots\]

\[= 1 + (t - 1) \sum_{i=1}^{h} 2t^{i-1} = 1 + 2(t-1) \sum_{i=0}^{h-1} t^i\]

\[= 1 + 2(t - 1)(\frac{t^h - 1}{t - 1})\]

\[= 1 + 2(t^h - 1)\]

\[= 2t^h - 1\]

\[n \geq 2t^h - 1\]

\[2t^h \leq n+1\]

\[t^h \leq \frac{n+1}{2}\]

\[\log_t t^h \leq \log_t \frac{n+1}{2}\]

\[h \leq \log_t \frac{n+1}{2}\]

Operations

- Root always in memory
 - Never read
 - Write only when modified

- Nodes passed to operations must have been Read

- All operations go from root down in one pass, \(O(h)\)

Search

This is a generalization of binary tree search.
Search(x, k)
 if k in node x
 then return x and i such that key_i(x) = k
 else if x is a leaf
 then return NIL
 else find i such that key_{i-1}(x) < k < key_i(x)
 DiskRead(child_i(x))
 return Search(child_i(x), k)
Click mouse to advance to next frame.

Search

- Node size should be ________ disk page size.
- Disk Accesses = Θ(log_t n), where n is #keys in B-tree
- Run Time = O(th) = O(t log_t n) = O(lg n), if t is constant

Example
Disk page size = 2048 bytes
4 bytes per key, 4 bytes per pointer, 4 bytes extra
Full node has (2t - 1) keys and 2t child pointers: 16t bytes per node
16t = 2048, t = 128

Insert

- If node x is a non-full (< 2t-1 keys) leaf, then insert new key k in node x
• If node x is non-full but not a leaf, then recurse to appropriate child of x

• If node x is full (2t-1 keys), then “split” the node into x_1 and x_2, and recurse to appropriate node x_1 or x_2.

In this example $t = 2$.
Click mouse to advance to next frame.

Splitting: B-Tree-Split-Child(x, i, y)

![Diagram](image)

Note: If y is root(T), then allocate node x and link to y before calling split.

Splitting: B-Tree-Split-Child(x, i, y)

B-Tree-Split-Child(x, i, y) ; x is parent, y is child in ith subtree

Allocate(z) ; $n(z) = t - 1$, leaf(z) = leaf(y)

Copy y’s second half keys and children to z

$n(y) = t - 1$

Shift x’s keys and children one to the right from i
\text{child}_{i+1}(x) = z \\
\text{key}_i(x) = \text{key}_t(y) \\
n(x) = n(x) + 1 \\
\text{Write}(x) \\
\text{DiskWrite}(y) \\
\text{DiskWrite}(z)

Running time is $\Theta(t)$ with 3 disk writes

\textbf{Insert: B-Tree-Insert}(T, k)

- Start at root(T) moving down the tree looking for the proper leaf to put k
- Split all full nodes along the way

\text{B-Tree-Insert}(T, k) \\
r = \text{root}(T) \\
\text{if } n(r) = 2t-1 \quad ; \text{full} \\
\text{then allocate empty node } s \text{ pointing to } r \\
\quad \text{B-Tree-Split-Child}(s, 1, r) \\
\quad \text{B-Tree-Insert-Nonfull}(s, k) \\
\text{else } \text{B-Tree-Insert-Nonfull}(r, k)

\text{B-Tree-Insert-Nonfull}(x, k) \\
\text{if leaf}(x) \\
\text{then shift keys of } x \text{ higher than } k \text{ one to the right} \\
\quad \text{put } k \text{ in appropriate spot} \\
\quad n(x) = n(x) + 1 \\
\quad \text{DiskWrite}(x) \\
\text{else find smallest } i \text{ such that } k < \text{key}_i(x)
DiskRead(child_i(x))
if n(child_i(x)) = 2t - 1 ; full
then B-Tree-Split-Child(x, i, child_i(x))
 if k > key_i(x)
 then i = i + 1 ; adjust due to new node entry from child
B-Tree-Insert-Nonfull(child_i(x), k)

Disk Accesses: O(h)
Run Time: O(th) = O(t log_t n) = O(lg n), if t constant

Example

Click mouse to advance to next frame.

Note how B-Trees grow from the top, not from the bottom like BSTs or RBTs.

Deletion: B-Tree-Delete(x, k)

• Search down tree for node containing k
• When B-Tree-Delete is called recursively, the number of keys in x
 must be at least the minimum degree t (the root can have < t keys)
• If x is a leaf, just remove key k and still have at least t-1 keys in x
• If there are not ≥ t keys in x, then borrow keys from other nodes.
Deletion

There are three general cases:

[Case 1:] If key k in node x and x is a leaf, then remove k from x. Click mouse to advance to next frame.

[Case 2:] If k is in x and x is an internal node. One of three subcases:

Case 2a

If child y ____________ k in x has $\geq t$ keys:

- Find predecessor k' of k in subtree rooted at y
- Recursively delete k' (first two steps can be performed in one pass down the tree)
- Replace k by k' in x

Click mouse to advance to next frame.

Case 2b

If child z ____________ k in x has $\geq t$ keys:

- Find successor k' of k in subtree y
- Recursively delete k'
- Replace k by k' in x

Click mouse to advance to next frame.
Case 2c

If both y and z have t-1 keys:

- Merge k and all of z into y
- Free z
- Recursively delete k from y

Note: x loses both k and pointer to z, y now contains 2t-1 keys. Click mouse to advance to next frame.

Case 3

if k not in internal node x
then determine subtree child_i(x) containing k
 if child_i(x) has ≥ t keys
 then B-Tree-Delete(child_i(x), k)
 else execute Case 3a or 3b until can descend to node having ≥ t keys

Case 3a

If child_i(x) has t-1 keys but has a left or right sibling with ≥ t keys, then borrow one from sibling
 move key from x to child_i(x)
 move key from sibling to x
 move child from sibling to child_i(x)
Click mouse to advance to next frame.
Case 3b

If $child_i(x)$ and its left and right siblings have $t-1$ keys
then merge $child_i(x)$ with one sibling using median key from x.
Click mouse to advance to next frame.

Analysis

Delete

Disk Accesses: $O(h)$, where $h = O(\log_t n)$
Run Time: $O(th)$

B-Tree Operations

Disk Accesses: $O(h) = O(\log_t n) = O(\lg n)$
Run Time: $O(th) = O(t \log_t n) = O(\lg n)$

Applications