Minimum Spanning Trees

Given a connected, undirected graph $G = (V, E)$ with edge weights $w(u,v)$ for each edge $(u,v) \in E$, the minimum spanning tree (MST) $T = (V, E')$ of G, $E' \subseteq E$, is an acyclic, connected graph such that $w(t) = \sum_{(u,v) \in E'} w(u, v)$ is minimized.

Example

```
    a     b     c
   3 - 4
 G:  2   1
    d
```

Applications

Circuit wiring: connecting common pins with minimal wire

Networking

Growing a Minimal Spanning Tree

Greedy approach

Given $A \subseteq T = \text{MST}(G)$, determine a minimum (u,v) to add to A such that $A \cup \{(u,v)\} \subseteq T$

Greedy-MST(G,w)

$A = \{\}$
while A is not a spanning tree ; includes all vertices of G
find a safe edge \((u,v)\) for A
\[A = A \cup \{(u,v)\} \]
return A

What is a “safe” edge?
A safe edge is an edge connecting a vertex in \(A \subseteq T\) to a vertex in \(G\) that is not in \(A\) such that \(A \cup \text{safe edge} \subseteq \text{MST}\).

Definitions:

A ____ \((S, V-S)\) of an undirected graph \(G = (V, E)\) is a partition of \(V\).

An edge \((u,v) \in E\) _________ the cut \((S, V-S)\) if \(u \in S\) and \(v \in V-S\).

(a,b) and (b,d) cross the cut
Definitions

A cut _______ the set A of edges if no edge in A crosses the cut.

\[
\begin{array}{ccc}
\text{a} & \text{3} & \text{b} \\
\text{2} & & \text{1}
\end{array}
\]

\[
\begin{array}{ccc}
\text{c} & \text{4} & \text{d}
\end{array}
\]

$A = (V, E)$, $V = \{a, b, c, d\}$, $E = \{(a,b), (b,c)\}$

An edge is a _______ crossing a cut if its weight is the minimum of any edge crossing the cut.

\[
\begin{array}{ccc}
\text{a} & \text{3} & \text{b} \\
\text{2} & & \text{1}
\end{array}
\]

\[
\begin{array}{ccc}
\text{c} & \text{4} & \text{d}
\end{array}
\]

(b,d) is the light edge

Theorem 24.1

Given a connected, undirected graph $G = (V, E)$ with edge weights w, $A \subseteq \text{MST}(G)$, cut $(S, V-S)$ that respects A, and light edge (u,v) crossing $(S, V-S)$, then (u,v) is a safe edge.

Proof: Assume $T = \text{MST}(G)$ contains edge (x,y) crossing $(S, V-S)$. Note that (x,y) must be on a unique path connecting u to v. Edge (u,v) would form a cycle. Removing (x,y) breaks T in 2 parts, but (u,v) reconnects
them.

T' is the new resulting MST.

Since (u,v) is a light edge, then $T' = T - \{(x,y)\} \cup \{(u,v)\}$ is also MST(G).

Note that this is true because (u,v) and (x,y) cross the same cut and (u,v) is safe, $w(u,v) \leq w(x,y)$, $w(T') = w(T) - w(x,y) + w(u,v) \leq w(T)$.

Since $(x,y) \notin A$ ($(S, V-S)$ respects A), then $A \cup \{(u,v)\} \subseteq T' = \text{MST}(G)$. Thus, (u,v) is a safe edge.

Corollary 24.2

Given $A \subseteq \text{MST}(G)$ and a connected component C of the forest $G_A(V, A)$, if (u,v) is a light edge connecting C to some other component in G_A, then (u,v) is safe for A.

Algorithm:

1. Find two unconnected components of G.
2. Connect them using a light edge.

Kruskal’s Algorithm

Kruskal’s Algorithm

repeat
find a light edge (u,v) between two unconnected components
A = A ∪ {(u,v)}
until all edges have been considered

• Sort the edges by weight
• Use disjoint sets for speed (union by rank and path compression)

MST-Kruskal(G, w) ; G = (V, E)
1 A = {}
2 foreach v in V ; O(V)
3 MakeSet(v)
4 sort edges E by nondecreasing weight w ; O(E lg E)
5 foreach edge (u,v) in E, in order ; m = |E| operations
6 if FindSet(u) ≠ FindSet(v) ; n = |V| keys
7 then A = A ∪ {(u,v)} ; O(m α(m,n))
8 Union(u,v) ; O(E α(E,V))
9 return A ; α(E,V) = O(lg E)

T(V,E) = O(V) + O(E lg E) + O(E lg E), V = O(E)
 = O(E lg E)
Example

\[
\text{Sorted } E = \{(b,d), (a,d), (a,b), (b,c)\}
\]

Prim’s Algorithm

Prim’s Algorithm
repeat
find minimal edge \((u,v)\) connecting \(A\) to a vertex not in \(A\)
\[A = A \cup \{(u,v)\} \]
until all vertices are in \(A\)

Implementation
Maintain a priority queue \(Q\) of vertices of the form

parent	points to neighbor vertex in \(A\) along smallest edge
key	weight of smallest edge
(in \(Q\))	true or false
Starting from some root vertex \(r \)
Update key and parent slots of vertices on \(A \) adjacent to \(r \)
Extract minimum-key vertex \(v \) from those adjacent to \(r \)
\(r = V \)

Pseudocode

\[
\text{MST-Prim}(G, w, r)
\]

1. \(\text{foreach } v \text{ in } V \) \; \(\text{O(V), BuildHeap} \)
2. \(\text{key}(v) = \infty \) \; \(\text{Fibonacci Heap } O(E + V \lg V) \)
3. \(\text{(inQ}(v) = \text{true}) \)
4. \(\text{Insert}(Q, v) \)
5. \(\text{key}(r) = 0 \)
6. \(\text{parent}(r) = \text{NIL} \)
7. \(\text{while } Q \neq \text{NIL} \) \; \(\text{O(V)} \)
8. \(u = \text{Extract-Min}(Q) \) \; \(\text{O(lg V)} \)
9. \(\text{(inQ}(u) = \text{false}) \) \; \(\text{Fibonacci Heap } O(\text{lg V}) \)
10. \(\text{foreach } v \text{ in } \text{Adj}(u) \) \; \(\text{O(E) total} \)
11. \(\text{if inQ}(v) \text{ and } w(u,v) < \text{key}(v) \) \; \(2 \mid E \mid \)
12. \(\text{then parent}(v) = u \) \; \(\text{O(lg V), DecreaseKey} \)
13. \(\text{key}(v) = w(u,v) \) \; \(\text{O(V lg V + E lg V)} \)

\[
\text{O(V lg V + E lg V) = O(E lg V)}
\]
\[
\text{Fibonacci Heap: } O(E + V \lg V)
\]

Example

\[
\text{MST-Prim}(G, w, r)
\]
Applications