String Matching

Find all occurrences of a pattern in a text

String Matching Problem:
Given text array $T[1..n]$ and pattern array $P[1..m]$ of characters from alphabet Σ, find all s such that $T[s+1..s+m] = P[1..m]$, i.e., P occurs with shift s in T.

Example

<table>
<thead>
<tr>
<th>row</th>
<th>row</th>
<th>row</th>
<th>your</th>
<th>boat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$s = 12$

$\Sigma = \{a, b, o, r, t, u, w, y\}$

T: yoyoyoyo
P: yoyo

String Matching

- Simple problem with many applications
 - text editing
 - pattern recognition
• Algorithms

- Naive $O((n-m+1)m)$ worst case
- Rabin and Karp $O((n-m+1)m)$ worst case, but better on average
- Finite Automaton $O(n+m | \Sigma |)$
- Knuth-Morris-Pratt $O(n+m)$
- Boyer and Moore $O((n-m+1)m+| \Sigma |)$ worst case, but better (best overall) in practice

Naive String Matching

Naive(T, P)

\[
\begin{align*}
n &= \text{length(T)} \\
m &= \text{length(P)} \\
\text{for } s &= 0 \text{ to } n-m \quad O(n-m+1) \\
&\quad \text{if } P[1..m] = T[s+1..s+m] \quad O(m) \\
&\quad \text{then print } "\text{Pattern occurs with shift} \ s" \\
\end{align*}
\]

This algorithm takes $O((n-m+1)m)$ time.

However, there is more information in a failed match:

\[
\begin{array}{cccccccc}
T: & a & a & a & a & b & a & a & \ldots \\
\hline
P: & a & a & a & a & a & \\
\hline
\end{array}
\]

\[s = s + m\]

No need to consider ________________
Rabin-Karp Algorithm

- Let characters be digits in radix-$|\Sigma|$ notation.
- Choose a prime number q such that $|\Sigma| q$ fits within a computer word to speed computations.

- Algorithm:
 Compute $(P \mod q)$
 Compute $(T[s+1, \ldots, s+m] \mod q)$ for $s = 0 \ldots n-m$
 Test against P only those sequences in T having the same (mod q) value
- $(T[s+1, \ldots, s+m] \mod q)$ can be incrementally computed by subtracting the high-order digit, shifting, adding the low-order bit, all in modulo q arithmetic.

Example

\[\Sigma = \{0, 1, \ldots, 9\} \]
\[P = 12, \ P \mod 3 = 0 \]
\[q = 3 \]

\begin{figure}[h]
\centering
\begin{array}{cccccccc}
5 & 5 & 3 & 1 & 2 & 2 & 7 & 3 & 1 \\
\hline
1 & 2 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\end{figure}
Analysis

The Rabin-Karp algorithm takes $\Theta((n - m + 1)m)$ time in the worst case.

$O(n) + O(m(v + n/q))$ average case, $v = \#\text{valid shifts}$

If $q \geq m$ and $v = O(1)$, then $O(n+m)$.

Finite Automata

A finite automata $M = (Q, q_0, A, \Sigma, \delta)$, where

- $Q =$ set of states (s_i)
- $q_0 =$ start state (s_0)
- $A =$ set of accepting states
- $\Sigma =$ input alphabet
- $\delta =$ transition function $Q \times \Sigma \rightarrow Q$

Example

Here is a finite automaton accepting strings with an even number of “a”s.

$\Sigma = \{a, b, c\}$.
\[\delta(s_0, a) = s_1 \]
\[\delta(s_0, b) = \delta(s_0, c) = s_0 \]
\[\delta(s_1, a) = s_2 \]
\[\delta(s_1, b) = \delta(s_1, c) = s_1 \]
\[\delta(s_2, a) = s_1 \]
\[\delta(s_2, b) = \delta(s_2, c) = s_2 \]

\[A = \{s_2\} \]

Consider input string \(w \). If \(w \) ends at state \(s \in A \), then the FA accepts \(w \); otherwise, the FA rejects \(w \).

Example: \(\text{str} = \text{bccabaccaba} \)
Accept

String Matching FA

1. Compute FA accepting \(P \) (\(m+1 \) states)
2. Run FA with input string \(T \), printing shift whenever accepting state is reached.

Example

\[P = \text{yoyo, m=4} \]
\[T = \text{spin your yoyo} \]
\[\Sigma = \{i, n, o, p, r, s, u, y\} \]
\[\Sigma = \Sigma - \{y, o\} \]
Analysis

Computing δ: $O(m|\Sigma|)$

$\text{FA-Matcher}(T, \delta, m)$; $O(n)$

$n = \text{length}(T)$

$s = s_0$

for $i = 1$ to n

$s = \delta(s, T[i])$

if $s = s_m$

then print “Pattern occurs with shift” (i-m)

This algorithm takes $O(n + m|\Sigma|)$ time.
Knuth-Morris-Pratt Algorithm

- Utilize a prefix array $\pi[1..m]$, where $\pi[q]$ contains information to compute $\delta(q, a)$ for ($a \in \Sigma$), the pattern shift for a mismatch on $P[q]$.

- π requires only $O(m)$ time (as opposed to $O(m|\Sigma|)$ for δ).

Prefix Array

Example

<table>
<thead>
<tr>
<th>n_e_y_o_y_o_d_y_n_e_y_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_o_y_o_s</td>
</tr>
</tbody>
</table>

$s = 2$

How far can we shift P over and be assured of catching all matches?

Since we have matched up to yoyo and yo is a suffix of yoyo, then we can shift over by 2 and start testing at $P[3]$.

Prefix Array

$\pi[q]$ answers the question:

If we have matched $P[1..q]$ in T, but $P[q+1]$ does not match, then what is the longest prefix of P, $P[1..k]$, that is a suffix of $P[1..q]$?

We can then start matching again from $P[k+1]$.
\[\pi[q] = \max\{k \mid k < q \text{ and } P[1..k] \text{ is a suffix of } P[1..q]\} \]

Example

\[
P = \begin{array}{cccc}
1 & 2 & 3 & 4 & 5 \\
y & o & y & o & s
\end{array}
\]

\[
\pi = \begin{array}{cccc}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 0
\end{array}
\]

Pseudocode

Compute-Prefix-Function(P)

\[
m = \text{length}(P) \\
\pi[1] = 0 \quad \text{; } \text{k must be less than } q \\
k = 0 \\
\text{for } q = 2 \text{ to } m \quad \text{; } O(m) \text{ amortized} \\
\quad \text{while } k > 0 \text{ and } P[k+1] \neq P[q] \\
\quad \quad k = \pi[k] \\
\quad \text{if } P[k+1] = P[q] \\
\quad \quad \text{then } k = k + 1 \quad \text{; prefix increased by one} \\
\quad \pi[q] = k \\
\text{return } \pi
\]

Pseudocode

KMP-Matcher(T, P)

\[
n = \text{length}(T)
\]
m = length(P)
\(\pi = \text{Compute-Prefix-Function}(P)\) \(\); O(m) amortized
q = 0
for i = 1 to n \(\); O(n) amortized
\(\text{while } q > 0 \text{ and } P[q+1] \neq T[i] \); where do we move to in P?
\(q = \pi[q]\)
if \(P[q+1] = T[i]\) \(\); matches so far
then \(q = q + 1\)
if \(q = m\)
then print “Pattern occurs with shift” (i-m)
\(q = \pi[q]\)

This algorithm takes _______\ time

Boyer-Moore Algorithm

- Most efficient (on average) when P is long and \(\Sigma\) is large
- Matches pattern from right to left
- Utilizes two heuristics

Bad Character Heuristic

Example
Good Suffix Heuristic

Example
Information For Bad Character Heuristic

Compute-Last-Occurrence(P, m \Sigma)

foreach a \in \Sigma
\lambda[a] = 0
for j = 1 to m
\lambda[P[j]] = j
return \lambda

Running time: O(| \Sigma | + m)

If mismatch at P[j] \neq T[s+j], then shift (j - \lambda[T[s+j]]).

Note: Shift could be negative, in which case ignore the shift value and use Good Suffix shift which always has a positive value.

Information for Good Suffix Heuristic

\gamma[j] = m - \max\{ k | 0 \leq k < m \text{ and } P[j+1..m] \sqsupset P_k \text{ or } P_k \sqsupset P[j+1..m]\} \\
\sqsupset \text{ means suffix (note: } x \sqsupset x \text{)}

If match j+1..m and P[j] \neq T[s+j], shift right \geq \gamma[j]

Examples

googoo

\[\begin{array}{c}
3 & 3 & 3 & 3 & 3 & 1 & 1 \\
\end{array} \]

j = 0, P_3 \sqsupset P[1..6]

googo

\[\begin{array}{c}
3 & 3 & 3 & 3 & 2 & 1 \\
\end{array} \]
Pseudocode

Compute-Good-Suffix(P, m)
π = Prefix(P)
P’ = reverse(P)
π’ = Prefix(P’)
for j = 0 to m ; O(m)
 γ[j] = m - π[m]
for l = 1 to m
 j = m - π’[l]
 if γ[j] > 1 - π’[l]
 then γ[j] = 1 - π’[l]
return γ

Example

m = 4
P = yoyo, π = ______
P’ = oyoy, π’ = ______
γ = ______
γ = ______

Boyer-Moore-Matcher

Boyer-Moore-Matcher(T, P, Σ)
n = length(T)
m = length(P)
λ = Compute-Last-Occurrence(P, m, Σ) ; O(|Σ| + m)
γ = Compute-Good-Suffix(P, m) ; O(m)
s = 0
while $s \leq n-m$; $O(n-m+1)$
 $j = m$
 while $j > 0$ and $P[j] = T[s+j]$; $O(m)$
 $j = j - 1$
 if $j = 0$
 then print “Pattern occurs with shift” s
 $s = s + \gamma[0]$
 else $s = s + \max(\gamma[j], j - \lambda[T[s+j]])$

Close to naive
$O((n-m+1)m + |\Sigma|)$
Boyer-Moore-Matcher is actually best in practice

Example

$T = \text{soyoyo}$
$P = \text{yoyo}$
$\gamma = \underline{\gamma}$
$\Sigma = \{0, s, y\}$
$\lambda = \underline{\lambda}$

\[
\gamma = \frac{2}{\text{yoyo}}
\]
Match

Applications