Computational Geometry

Compute properties of a set of points, lines or geometric objects (defined by points and lines)

Properties: extent, intersection, proximity relationships

Applications:

- graphics (e.g., hidden line removal)
- robotics (e.g., path planning, object avoidance)
- design (e.g., component placement, packaging)
- statistics (e.g., nearest neighbor)
- sensor planning (e.g., area of observation calculation)

Line Segments

\[\overrightarrow{p_1p_2} \]

Questions

Is \(\overrightarrow{p_0p_1} \) clockwise (cw) or counterclockwise (ccw) of \(\overrightarrow{p_0p_2} \)?
Turning direction from $\overrightarrow{p_0p_1}$ to $\overrightarrow{p_1p_2}$?

Do $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_3p_4}$ intersect?

Cross Product

$$\overrightarrow{p_0p_1} \times \overrightarrow{p_0p_2}$$

Assuming $p_0 = (0, 0)$, compute the signed area within $(0,0)$, $p_1, p_2, p_1 + p_2 = (x_1 + x_2, y_1 + y_2)$.

$$\overrightarrow{p_1} \times \overrightarrow{p_2} = x_1y_2 - x_2y_1$$, the area of the parallelogram
This is the determinant of the matrix
\[
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2
\end{bmatrix}
\]

Note if \(p_1 = (4,0) \) and \(p_2 = (2,4) \), we are computing the signed area within (origin, \(p_1 \), \(p_2 \), \(p_1 + p_2 \)) which is \(\vec{p}_1 \times \vec{p}_2 = 16 - 0 = 16 \).

If we compute \(\vec{p}_2 \times \vec{p}_1 \) the signed area is \(0 - 16 = -16 \).

Example

\[
\begin{pmatrix}
 3 \end{pmatrix} \begin{pmatrix}
 5 \\
 5
\end{pmatrix}
\]
\[
\begin{pmatrix}
 4 \end{pmatrix} \begin{pmatrix}
 4 \\
 4
\end{pmatrix}
\]
\[
\begin{pmatrix}
 5 \end{pmatrix} \begin{pmatrix}
 3 \\
 3
\end{pmatrix}
\]

\(\vec{p}_1 \times \vec{p}_2 > 0 \), \(\vec{p}_2 \) ccw from \(\vec{p}_1 \)

\(\vec{p}_1 \times \vec{p}_3 < 0 \), \(\vec{p}_3 \) cw from \(\vec{p}_1 \)

Therefore there is a cw relation by translating \(p_0 \) to the origin and taking the cross product.
Turn

\[\mathbf{p}_1 \times \mathbf{p}_3 > 0 \rightarrow \quad \text{ccw} \]

\[\mathbf{p}_1 \times \mathbf{p}_2 < 0 \rightarrow \quad \text{cw} \]

Intersection

1. Quick rejection by bounding box

2. Straddle: One line segment \(l_1 \) straddles another line segment \(l_2 \) if
 - One point of \(l_1 \) on one side of \(l_2 \) and
• The second point of l_1 lies on the other side of l_2

Example

$\vec{a} \times \vec{c} < 0$
$\vec{b} \times \vec{c} > 0$
Different Sign: Straddles
Example

\[\vec{a} \times \vec{c} < 0 \]
\[\vec{b} \times \vec{c} < 0 \]
Same Sign: No straddle

Example

Check \(p_1 p_2 \) with \(p_3 p_4 \), and \(p_3 p_4 \) with \(p_1 p_2 \)
Any intersecting segments

Sort segments by left endpoints

Pass a vertical sweep line over the segments

Put segment in RB tree when hit left endpoint, order by y value
 Check intersection between new and ABOVE and between new and BELOW

Remove segment from RB tree when hit right endpoint
 Check intersection between ABOVE and BELOW

If two line segments intersect, they will eventually be neighbors
 Neighbors when one of the segments is added, and the first check will catch the intersection
 Neighbors when another segment is deleted, and the second check will catch the intersection
 The intersecting lines will eventually intersect the sweep line.
 No false positives

Assume no vertical lines, no 3 lines intersect at same point
Sweep line: RB tree contains 1
Sweep line: RB tree contains 2, 1, no intersect
Sweep line: RB tree contains 2, 1, 3, no intersect
Sweep line: RB tree contains 2, 3, intersect
Sweep line: RB tree contains 2, 3, no intersect
Sweep line: RB tree contains 2, 4, 3, no intersect
Sweep line: RB tree contains 2, 4, 3, 5, no intersect
Sweep line: RB tree contains 2, 4, 3, no intersect
Sweep line: RB tree contains 2, 3, intersect
Sweep line: RB tree is empty

For n segments:

- sort segments: \(n \lg n \)
- \(n \) RB-Inserts: \(n \lg n \)
- \(n \) RB-Deletes: \(n \lg n \)
- \(O(1) \) comparison

The algorithm takes ___________\ time.
Graham’s Scan

- Start with lowest point p_0 ($\Theta(n)$)
- Sort remaining points based on polar angle from p_0 ($\Theta(n \lg n)$)
- Build $p_0, p_1, p_2, \ldots, p_k$ as long as $p_{k-1} p_k p_{k+1}$ makes a left turn (p_k is on the top of the stack)
- If not, remove p_k’s until it does
Example
Analysis

Stack Implementation

Sort: $O(n \lg n)$
Push/Pop Naive: $O(n^2)$
Push/Pop Aggregate: ______

Graham’s Scan algorithm takes $O(n \lg n)$ time.

Jarvis’ March

Jarvis-March(P) ; $P = \langle p_0, \ldots, p_{n-1} \rangle$ points

 $p = p_0$, the lowest point

 while p not highest point

 find point p_m with minimum polar angle from p →

 add p_m to convex hull

 $p = p_m$

 while $p \neq p_0$

 find point p_m with minimum polar angle from ← p

 add p_m to convex hull

 $p = p_m$
Example

Analysis
Both while loops total of \(h \) times, where \(h \) is the number of points on the convex hull.

Body of while loops takes _____ to compute minimums.

Jarvis March algorithm takes ______ time.

Closest Pair Of Points

Brute force solution: \(n^2 \)

Better solution:

- Given points \(P \)
- Sort points by x coordinate into \(X \)
- Sort points by y coordinate into \(Y \)
- Execute \(\text{Closest-Pair}(P,X,Y) \)
Closest-Pair(P, X, Y)
if $|P| \leq 3$
then compute closest pair and return ; O(1)
divide points evenly along x axis at x = 1 into $P_L(X_L,Y_L)$ and $P_R(X_R,Y_R)$

$d_L = \text{distance}(\text{Closest-Pair}(P_L,X_L,Y_L))$
$d_R = \text{distance}(\text{Closest-Pair}(P_R,X_R,Y_R))$

$d = \min(d_L,d_R)$
foreach point p in $(1 - d) \leq x \leq (1 + d)$
check 7 points p’ closest to p by y-coordinate

$d’ = \text{distance}(p,p’)$
if $d’ < d$
then retain new closest pair

return closest pair

\[\]

Why only 7 points?

Only 8 points define the rectangle whose pairwise distance is d.

For each point we need to check the 7 others in sorted order by y coordinate value.

If a closer d exists then it will be to one of these.
Analysis

Initial Sorts: $O(n \lg n)$

Closest Pair:

$$T(n) = \begin{cases}
\Theta(1) & \text{if } n \leq 3 \\
2T(n/2) + \Theta(n) & \text{if } n > 3
\end{cases}$$

$a = 2$, $b = 2$, $f(n) = \Theta(n) = \Theta(n^{\lg 2})$, case 2

$T(n) = \Theta(n \lg n)$

Closest-Pair algorithm takes $\Theta(n \lg n)$ time.

Applications