NP-Completeness

Almost all algorithms considered so far run in worst-case polynomial time. That is,

\[T(n) = O(n^k) \text{ for some constant } k \]

\[n = \text{input size} \]

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Size n 10</th>
<th>Size n 20</th>
<th>Size n 30</th>
<th>Size n 40</th>
<th>Size n 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>.00001 s</td>
<td>.00002 s</td>
<td>.00003 s</td>
<td>.00004 s</td>
<td>.00005 s</td>
</tr>
<tr>
<td>(n^2)</td>
<td>.0001 s</td>
<td>.0004 s</td>
<td>.0009 s</td>
<td>.0016 s</td>
<td>.0025 s</td>
</tr>
<tr>
<td>(n^3)</td>
<td>.001 s</td>
<td>.008 s</td>
<td>.027 s</td>
<td>.064 s</td>
<td>.125 s</td>
</tr>
<tr>
<td>(n^5)</td>
<td>.1 s</td>
<td>3.2 s</td>
<td>24.3 s</td>
<td>1.7 min</td>
<td>5.2 min</td>
</tr>
<tr>
<td>(2^n)</td>
<td>.001 s</td>
<td>1.0 s</td>
<td>17.9 min</td>
<td>12.7 days</td>
<td>35.7 years</td>
</tr>
<tr>
<td>(3^n)</td>
<td>.059 s</td>
<td>58 min</td>
<td>6.5 years</td>
<td>3855 centuries</td>
<td>2(\times)10^8 centuries</td>
</tr>
</tbody>
</table>

P

The class of algorithms that run in polynomial time is called P.

Algorithms that require more (exponential) time are “intractable”

Some problems seem to inherently require more time

One class of such problems is Nondeterministically Polynomial (NP), also called polynomial-time verifiable
Obviously, $P \subseteq NP$, but $P \subset NP$ (or $P = NP$) is an open question.

An NP-Complete problem is in NP and is as hard as any problem in NP. Such a problem not necessarily in NP is called NP-Hard.

If $P = NP$, then a large class of NP-Complete problems would have a polynomial-time solution.
Thus, most researchers advocate $P \subset NP$ ($P \neq NP$)

We would like to know the class to which a problem belongs.

Problems

A _______ Q is a binary relation on a set I of ____________
and a set S of ____________.

Example: Shortest-Path Problem

Instance: graph G
vertices u and v

Solution: sequences of vertices (shortest path)

Decision Problems

A ________________ is a problem whose solution set $S = \{\text{no, yes}\}$
or $\{0, 1\}$.

Example: Path decision problem
Instance: graph G
vertices u and v
non-negative integer k

Solution: 1, if path $u \sim v$ with length at most k
0, otherwise

Encoding Problems

An _________ of a problem is a mapping from problem instances to symbol strings over some alphabet Σ, where $|\Sigma| \geq 2$.
Typically, $\Sigma = \{0, 1\}$.

Problems represented as binary strings are called _________ problems.
An algorithm _______ a concrete problem in time $O(T(n))$ if, when provided any problem instance i of length $n = |i|$, the algorithm can produce the solution in at most $O(T(n))$ time.
A concrete problem is ___________________________ if there exists an algorithm to solve it in time $O(n^k)$ for some constant k.

The ________________________ is the set of concrete decision problems solvable in polynomial time.

Formal Languages

These provide a convenient framework for analyzing decision problems.
An \(\Sigma \) is a finite set of symbols.

A \(L \) over \(\Sigma \) is any set of strings made up of symbols in \(\Sigma \).

Denote empty string \(\epsilon \) and empty language \(\emptyset \).

The language of all strings over \(\Sigma \) is \(\Sigma^* \).

E.g., if \(\Sigma = \{0, 1\} \), \(\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\} \)

Example: PATH decision problem language

\[
\text{PATH} = \{(G, u, v, k) \mid G = (V, E) \text{ is a directed graph, } u, v \in V, k \geq 0 \text{ is an integer, and there exists a path from } u \text{ to } v \text{ in } G \text{ whose length is at most } k\}
\]

Note that the problem \(\langle G, u, v, k \rangle \) is encoded as a binary string.

Decision Problems and Algorithms

An algorithm \(A \) \(\text{ accepts a string } x \in \{0,1\}^* \) if, given input \(x \), the algorithm outputs \(A(x) = 1 \)

The language \(L \) \(\text{ accepted by an algorithm } A \) is the set \(L = \{x \in \{0,1\}^* \mid A(x) = 1\} \)

An algorithm \(A \) \(\text{ accepts a string } x \) if \(A(x) = 0 \)

A language \(L \) is \(\text{ accepted by an algorithm } A \) if every binary string is either accepted or rejected by the algorithm.
Example

The language PATH is decided by the following algorithm in polynomial time:

Use Bellman-Ford to find shortest path from u to v in G
If length(path) ≤ k
then output 1
else output 0

Decision Problems and Algorithms

A __________________________ is a set of languages, membership in which is determined by a __________________________ (e.g., running time) on an algorithm that determines whether a given string belongs to a language.

Example

\[P = \{ L \subseteq \{0, 1\}^* \mid \text{there exists an algorithm } A \text{ that decides } L \text{ in polynomial time}\} \]

Theorem 36.2

\[P = \{ L \mid L \text{ is accepted by a polynomial time algorithm}\} \]

Proof:

There exists an algorithm \(A' \) that runs algorithm \(A \) for a polynomial amount of time and rejects if \(A \) has not yet accepted the string; otherwise accepts.
Polynomial-Time Verification

Given a problem instance and a solution (certificate), verify that the solution solves the problem.

Example: PATH problem

Given: \(\langle G, u, v, k \rangle \), path \(p \)

Verify: \(\text{length}(p) \leq k \)

In some cases, having a certificate does not help much since verification is no faster than generating a solution from scratch (e.g., PATH).

However, this is not true of all problems...

Hamiltonian Cycles

A **Hamiltonian Cycle** of an undirected graph \(G = (V, E) \) is a simple cycle that contains each vertex in \(V \).

Hamiltonian Cycle Decision Problem: Does a graph \(G \) have a Hamiltonian Cycle?

Language: \(\text{HAM-CYCLE} = \{ \langle G \rangle \mid G \text{ contains a Hamiltonian Cycle} \} \)
Naive Solution: Try all possible cycles.

If encode graph as an adjacency matrix and \(n = | \langle G \rangle | \), then the number of vertices \(m \) in \(G \) is \(\Omega(\sqrt{n}) \). There are \(m! \) permutations of vertices (possible cycles); thus, running time is \(\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}}) \), which is \(\neq O(n^k) \) for any constant \(k \).

In fact, HAM-CYCLE is NP-Complete.

Verification Algorithms

Consider a corresponding verification problem for HAM-CYCLE:

Given a cycle and a graph \(G \), verify if cycle is a Hamiltonian cycle in \(G \).

Running time: \(O(n^2) \)

- A **verification algorithm** is a two-argument algorithm \(A \), where one argument is an ordinary input string \(x \), and the other argument is a binary string \(y \) called a **certificate**. Algorithm \(A \) **verifies** \(x \) if there exists a \(y \) such that \(A(x,y) = 1 \).

- The **language verified** by a verification algorithm \(A \) is

\[
L = \{ x \in \{0,1\}^* \mid \text{there exists } y \in \{0,1\}^* \text{ such that } A(x,y) = 1 \}
\]

NP

The **complexity class** **NP** is the class of languages that can be verified by a polynomial-time algorithm.
L ∈ NP if algorithm A verifies language L in polynomial time.

Example: HAM-CYCLE ∈ NP

Reducibility

A problem Q can be **reduced** to another problem Q’ if any instance of Q can be “easily rephrased” as an instance of Q’, whose solution provides a solution to the instance of Q.

Example: Solving \(ax + b = 0 \) reduces to solving \(0x^2 + ax + b = 0 \).

A language \(L_1 \) is **poly-time reducible** to language \(L_2 \), written \(L_1 \leq_P L_2 \), if there exists a poly-time computable function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) such that for all \(x \in \{0,1\}^* \):

\[
x \in L_1 \iff f(x) \in L_2
\]

where \(f \) is the **reduction function**.

This is a one-way function. Q’ will not always reduce to Q.

Examples

The following example illustrates the concept of reducibility. Consider three problems, A, B, and C:

- A=Prime\((n)\): The problem of determining whether or not \(n \) is a prime number.
- B=Numberfactor\((n)\): The problem of counting the number of distinct primes that divide \(n \).
• \(C = \text{Smallestfactor}(n) \): The problem of finding the smallest integer \(x \geq 2 \) such that \(x \) divides \(n \).

In this example \(A \leq_P C \), and \(B \leq_P C \). Why?

Thus the solution of \(\text{Smallestfactor}(n) \) tells us that \(n \) is not a prime. To see how \(B \leq_P C \) we need a simple algorithm that counts the number of distinct divisors of \(n \) using \(C \).

Lemma 36.3

If \(L_1, L_2 \subseteq \{0,1\}^* \), and \(L_1 \leq_P L_2 \), then \(L_2 \in \text{P} \) implies \(L_1 \in \text{P} \).

For any instance of \(L_1 \)
map to \(L_2 \) (poly time)
solve \(L_2 \) (poly time)
Thus if we can solve \(L_2 \) in poly time we can solve \(L_1 \) in poly time.

NP-Completeness

NP-Complete problems are the hardest problems (no problem is harder) in \(\text{NP} \), i.e., every problem in \(\text{NP} \) reduces to an NP-Complete problem.

• A language \(L \subseteq \{0,1\}^* \) is **NP-Complete** if \(L \in \text{NP} \), and \(L' \leq_P L \) for every \(L' \in \text{NP} \).

• The class of NP-Complete languages is called **NPC**.

• A language \(L \subseteq \{0,1\}^* \) is **NP-Hard** if \(L' \leq_P L \) for every \(L' \in \text{NP} \).
• A language that is NP-Hard is not necessarily in NP.
 E.g., Kth Largest Subset is NP-Hard, but not NPC.
 KLS: are there at least K distinct subsets A' of set A such that
 $\sum_{a \in A'} a \leq B$?

If we can solve one NPC problem in polynomial time, we can solve every
problem in NP in polynomial time. For this reason, many assume $P \neq NP$.

Theorem 36-4

If any NP-Complete problem is poly-time solvable, then $P = NP$.
If any problem in NP is provably not poly-time solvable, then all NP-
Complete problems are not poly-time solvable.
If we can prove one problem is NP-Complete, then we can prove others
more easily by showing an NP-Complete problem reduces to them.