Circuit Satisfiability

![AND gate](image1) ![OR gate](image2) ![NOT gate](image3)

Boolean Combinational Circuits

\[
x_1 \rightarrow !x_1 \rightarrow x_1 \\
\]

not satisfiable for any \(x_1 \in \{0,1\} \)

\[
x_1 \rightarrow x_1 \vee x_2 \\
\]

satisfiable for \(x_1 x_2 = 01, 10, \) or \(11 \), thus satisfiable

Circuit-Satisfiability Problem

Given a boolean combination circuit composed of AND, OR, and NOT gates, is it satisfiable?

\[
\text{CIRCUIT-SAT} = \{ \langle C \rangle \mid \text{C is a satisfiable boolean combinational circuit} \}
\]

where \(\langle C \rangle \) is a binary-string encoding of the circuit (e.g., as a graph)

Determining membership in CIRCUIT-SAT would require checking the \(2^k \) possible binary assignments to the \(k \) inputs of a circuit.

There is strong evidence that CIRCUIT-SAT \(\not\in P \).
CIRCUIT-SAT is NP-Complete

Proof:

1. CIRCUIT-SAT ∈ NP
 Proof: Can verify an input assignment satisfies a circuit by computing the output of a finite number of gates, one of which will be the output of the circuit. This can be done in polynomial time. Thus, by definition of NP, CIRCUIT-SAT ∈ NP.

2. CIRCUIT-SAT ∈ NP-Hard
 I.e., L ≤ₚ CIRCUIT-SAT for every L ∈ NP
 Proof: Complex
 Show that any problem in NP can be computed using a boolean combination circuit (i.e., a computer).
 This circuit has a polynomial number of elements and can be constructed in polynomial time. Thus, L ≤ₚ CIRCUIT-SAT for all L ∈ NP.
 Thus, CIRCUIT-SAT ∈ NP-Hard.

CIRCUIT-SAT is NP-Complete
Proof by Cook, 1971

NP-Completeness Proofs

Lemma 36.8
If \(L \) is a language such that \(L' \leq_P L \) for some \(L' \in \text{NPC} \), then \(L \) is NP-Hard. If also \(L \in \text{NP} \), then \(L \in \text{NPC} \).

Strategy for proving \(L \in \text{NP} \)

1. Prove \(L \in \text{NP} \) (poly-time verifiable)
2. Select \(L' \in \text{NPC} \)
3. Describe poly-time algorithm computing a function \(f \) that maps instances of \(L' \) to instances of \(L \)
4. Prove that \(x \in L' \) iff \(f(x) \in L \) for all \(x \in \{0,1\}^* \).

Note: Showing \(L' \leq_P \text{spec}(L) \) implies \(L' \leq_P L \).

Example: Boolean Formula Satisfiability

SAT: Given a Boolean formula in Conjunctive Normal Form (C.N.F.), does there exist a satisfying assignment?

\[
\text{SAT} = \{ \ B : \ B \text{ is a boolean formula in CNF that is satisfiable by some truth assignment to its variables} \}
\]

A CNF formula is a boolean formula composed of variables and connectives AND, OR, NOT, IMPLIES, and EQUIV, possibly separated by parentheses.

Let \(B = (u_1 \lor \overline{u}_2) \land (\overline{u}_1 \lor u_2) \).

This is an *instance* of SAT for which the answer is “yes”. A satisfying truth assignment is given by \(t(u_1) = t(u_2) = T \).

On the other hand, the expression \(u_1 \land \overline{u}_1 \) is an instance of SAT for which the answer is “no”.

3
SAT ∈ NPC

Proof:

1. SAT ∈ NP
 Replace each variable with 0 or 1 as specified by the certificate and evaluate (poly-time).

2. Select L’ = CIRCUIT-SAT

3. Reduction from CIRCUIT-SAT to SAT.
 Straight-forward technique of computing the formula of each gate output as a combination of the input formulae may cause exponential instantiations of a variable as outputs are copied to multiple inputs. Instead, let each gate output be a variable. AND the output variable with expressions for each gate describing the equivalence between the gate’s output and input variables.

Example

Circuit C

\[
\begin{align*}
x_1 & \quad x_2 \quad x_4 \quad x_4 \\
x_3 & \quad x_5 & \quad x_6
\end{align*}
\]

Formula

\[
\phi = x_6 \land (x_4 \leftrightarrow (x_1 \land x_2)) \land (x_5 \leftrightarrow \neg x_3) \land (x_6 \leftrightarrow (x_4 \lor x_5))
\]

Constructing this formula takes polynomial time.
SAT \in NPC

4. Prove $x \in L'$ iff $f(x) \in L$, where L' is CIRCUIT-SAT, L is SAT, and f is the construction above.

$$x \in \text{CIRCUIT-SAT} \rightarrow f(x) \in \text{SAT}$$

If C has a satisfying assignment, then each wire is well-defined and the output is 1.

Therefore, each conjunct of ϕ is 1, and ϕ will evaluate to 1.

A satisfying assignment to ϕ yields a valid circuit C whose output is 1.

CNF Satisfiability

When the full power of SAT is not required to prove a language is in NPC, 3-CNF provides a more constrained alternative.

k-CNF (Conjunctive Normal Form) is a formula having a conjunction of clauses, where each clause is a disjunction of exactly k literals (variable or its negation).

Example 3-CNF: $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor \neg x_2 \lor x_4)$

Theorem 36.10

3-CNF-SAT \in NPC
Some NP-Complete Problems

Clique Problem

CLIQUE: Given graph $G = (V, E)$, find largest subset $V' \subseteq V$ such that $\forall u, v \in V'$, $(u, v) \in E$.

I.e., V' forms a complete subgraph of G (usually want largest).

$\text{CLIQUE} = \{ \langle G, k \rangle : \exists V' \subseteq V \text{ of size } \geq k \text{ and } \forall u, v \in V', (u, v) \in E \}$

Example
The running time of the CLIQUE algorithm is $\Omega\left(k^2 \binom{|V|}{k}\right)$.

Theorem 36.11: CLIQUE \in NPC

1. **CLIQUE \in NP**
 To show CLIQUE in NP, we use set V' of vertices as a certificate.
 Verifying is polynomial time, check whether for every pair u,v in V', the edge is in E ($|V'|^2$ pairs).

2. **$L' = 3$-CNF-SAT**

3. **3-CNF-SAT \leq_P CLIQUE**
Start with instance of 3-CNF-SAT (also called 3CNF). Let f be 3CNF with k clauses, \((C_{11} \lor C_{12} \lor C_{13}) \land (C_{21} \lor C_{22} \lor C_{23}) \land (C_{31} \lor C_{32} \lor C_{33}) \land \ldots (C_{k1} \lor C_{k2} \lor C_{k3})\).

For \(r = 1, 2, \ldots, k\), each clause has three distinct literals \(l^r_1, l^r_2, l^r_3\).

Construct a graph \(G\) such that \(f\) is satisfiable iff \(G\) has a clique of size \(k\).

For each \(C_r\) in \(f\), put triple of vertices \(v^r_1, v^r_2, v^r_3\) in \(V\).
Add edge \((v^r_i, v^r_j)\) if

1. \(v^r_i\) and \(v^r_j\) are in different triples \((r \neq s)\), and
2. their corresponding literals are consistent \((l^r_i\) is not the negation of \(l^s_j))\.

Proof (cont.)

This graph is constructed in polynomial time.

If \(f = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)\), then the graph is

![Graph Diagram]

| 8 |
Proof (cont.)

4. Is this a reduction?

Suppose f has a satisfying assignment. Then each clause \(C_r \) contains at least one literal \(l_i^r \) that is assigned 1, and each such literal corresponds to a vertex \(v_i^r \).

Picking one such ”true” literal from each clause yields a set \(V' \) of k vertices.

Is \(V' \) a clique? For any two vertices \(v_i^r, v_j^s \), \(r \neq s \), the corresponding literals are mapped to 1 by the satisfying assignment and thus the literals cannot be complements. By the construction of \(G \), the edge \((v_i^r, v_j^s) \) belongs in \(E \).

Proving the other direction, if \(G \) has a clique \(V' \) of size k, no edges in \(G \) connect vertices in the same triple, so \(V' \) contains exactly one vertex per triple. Assign a 1 to each literal \(l_i^r \) such that \(v_i^r \) in \(V' \) without fear of assigning 1 to a literal and its complement. Each clause is satisfied, and \(f \) is satisfied.

Vertex-Cover Problem

A vertex cover of an undirected graph \(G = (V, E) \) is a subset \(V' \subseteq V \) such that each edge in \(E \) is incident on at least one of the vertices in \(V' \).

\[
VC = \{ (G, k) : G = (V, E) \text{ is a graph, and } \exists V' \subseteq V \text{ such that } |V'| \leq k \text{ and } \forall (u, v) \in E, \text{ either } u \in V' \text{ or } v \in V' \text{ (or both) } \}
\]
Original Graph \(G \)

\[
\begin{array}{c}
\text{K = 1} & \text{NONE} \\
\text{K = 2} & \text{NONE} \\
\text{K = 3} & \text{NONE} \\
\text{K = 4} & \\
\end{array}
\]

Vertex Cover

\[
\text{VC} = \{ (G, k) \mid \text{graph } G \text{ has vertex cover of size } k \}
\]

Theorem 36.12: \(\text{VC} \in \text{NPC} \)

Proof Sketch:

1. **VC \in NP**

 Given \(V' \), check \(|V'| = k \), and for each edge \((u,v) \in E\), check that either \(u \in V' \) or \(v \in V' \).

2. **L' = CLIQUE**

3. **CLIQUE \leq_P VC**

 If graph \(G = (V, E) \) has clique \(V' \), then graph \(\overline{G} \) has vertex cover \(V - V' \).

 \(\overline{G} = (V, \overline{E}) \) is the complement of \(G = (V, E) \), where \(\overline{E} = \{ (u, v) \mid (u, v) \notin E \} \).
\[E \}
Reduction: \(G \rightarrow \overline{G} \) (poly-time)

4. \(x \in \text{CLIQUE}(G) = V' \rightarrow f(x) \in \text{VC}(G) = V - V' \) \(|V'| = k\)

Every edge \((u,v) \in E\) implies \((u,v) \notin E\), thus at least one of \(u\) and \(v\) \(\notin V'\). Thus, at least one of \(u,v\) belongs to \(V - V'\), which means edge \((u,v)\) is covered by \(V - V'\). Similar argument for other direction.

Set-Covering Problem

Given a finite set \(X\) and a family \(F\) of subsets of \(X\), \(X = \bigcup_{S \in F} S\), find a minimum-size subset \(C \subseteq F\) whose members cover all of \(X\).

\[
\text{SC} = \{ \langle X, F, k \rangle \mid \text{there exists a set cover } C \subseteq F \text{ covering } X \text{ with size } \leq k \}
\]

Theorem: \(\text{SC} \in \text{NPC} \)

Proof:

1. Given \(C\), check that all elements of \(X\) are members of some set in \(C\) and that \(|C| \leq k\).
2. \(L' = VC \)

3. Given \(\langle G, k \rangle \in VC \), define \(F \) such that each element of \(F \) is a subset for a vertex \(v \) in \(G \) containing \(v \) and all vertices reachable by an edge from \(v \).
 Let \(X = V \). Then \(\langle X, F, k \rangle \in SC \).

4. If \(C \) is the vertex cover of \(\langle G, k \rangle \in VC \), then every vertex \(u \) in \(G \) is incident from an edge \((u,v)\) where either \(u \in C \) or \(v \in C \). Thus all vertices will appear in some set in \(F \), and the sets in \(F \) corresponding to the vertices in \(C \) make up the set covering of \(\langle X, F, k \rangle \in SC \).

Subset Sum Problem

\(\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid \text{there exists } S' \subseteq S \subseteq N \text{ such that } \sum_{s \in S'} s = t \in N \} \),

\(N = \) set of natural numbers

Theorem 36.13: \(\text{SUBSET-SUM} \in NPC \)

Proof:

1. \(\text{SUBSET-SUM} \in \text{NP} \). Just add up elements of \(S' \) and compare sum to \(t \).

2. \(L' = VC \)

3. \(VC \leq_P \text{SUBSET-SUM} \)

4. \(x \in VC \iff f(x) \in SS \)
 Proof is complex.
Hamiltonian Cycle Problem

A Hamiltonian Cycle is a simple cycle in a graph going through each vertex exactly once.

\[\text{HC} = \{ \langle G \rangle | \text{G has a Hamiltonian cycle}\} \]

\[\text{HC} \in \text{NPC} \]

Proof:

1. Done earlier.

2. \(L' = 3\text{-CNF-SAT} \)

3. \(3\text{-CNF-SAT} \leq_p \text{HC} \)

4. \(x \in 3\text{-CNF-SAT} \iff f(x) \in \text{HC} \)

 Proof is complex.

Traveling Salesman Problem

Given a complete graph with weights on the edges, find a cycle of least total weight that visits each vertex exactly once.

Decision Problem:

\[\text{TSP} = \{ \langle G, k \rangle | \text{G is a complete graph with weights on edges that contains a cycle of total weight } \leq k \text{ visiting each vertex exactly once}\} \]
Theorem 36.15: TSP ∈ NPC

Variant of proof in textbook.
Proof sketch:

1. **TSP ∈ NP**
 Given a tour, check that each vertex is visited exactly once and the sum of costs ≤ k

2. **L’ = HC**

3. **HC ≤ₚ TSP**
 Given graph $G = (V, E)$, transformation f outputs complete graph with vertices V.
 Weights of edges = 1 if $e \in E$, or $(-V - 1)$ if $e \notin E$
 Also outputs the number $-V-$.
 f is clearly implementable in polynomial time.

4. Then there exists a tour in this complete graph of size ≤ $|V|$ iff there exists a Hamiltonian Cycle in original graph.
Partition Problem

Given a finite set A and a “size” $s(a) \in \mathbb{Z}^+$ for each $a \in A$, find a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in (A-A')} s(a)$$

PARTITION $= \{ \langle A, s(a) \rangle : \exists A' \subseteq A$ such that the sums of A' and $(A-A')$ are equal $\}$

For example, if $A = \{a = 1, b = 2, c = 3, d = 4, e = 5, f = 7, g = 8\}$, then one possible partition is $A' = \{a, b, c, d, e\}$ and $A - A' = \{f, g\}$. The sum of both subsets is 15.

Knapsack Problem

KNAPSACK: Given a finite set U, a “size” $s(u) \in \mathbb{Z}^+$ and a “value” $v(u) \in \mathbb{Z}^+$ for each $u \in U$, a size constraint $B \in \mathbb{Z}^+$, and a value goal $K \in \mathbb{Z}^+$, is there a subset $U' \subseteq U$ such that $\sum_{u \in U'} s(u) \leq B$ and $\sum_{u \in U'} v(u) \geq K$?

This can be seen as a knapsack, which has a size limit for the objects, as in the picture below.
The goal is to pick a collection of objects that will fit in the knapsack and whose total value is at least K (K is input)

$\text{KNAPSACK} = \{(U, s, v, B, K) : \exists \text{ subset } U' \text{ of } U \text{ such that the sum of } s \text{ values is at most } B, \text{ and the sum of } v \text{ values is at least } K\}$

KNAPSACK is NP-Complete

Proof: We will show that the KNAPSACK problem is NP-complete by polynomial-time restricting it in a way that makes it equal to the PARTITION problem, or $\text{PARTITION} \leq_P \text{spec(KNAPSACK)}$.

We can restrict KNAPSACK to PARTITION by allowing only instances in which $s(u) = v(u)$ for all $u \in U$ and $B = K = 1/2 \sum_{u \in U} s(u)$.

NP-Complete Problems