Dynamic Programming

Similar to divide-and-conquer, but avoids duplicate work when subproblems are identical.

(Typically used for optimization problems like the Traveling Salesman Problem).

Matrix Multiplication

Problem: Find optimal parenthesization of a chain of matrices to be multiplied such that the number of scalar multiplications is minimized.

Recall matrix multiplication algorithm:

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} \times \begin{bmatrix}
7 & 10 \\
8 & 11 \\
9 & 12
\end{bmatrix} = \begin{bmatrix}
1 \times 7 + 2 \times 8 + 3 \times 9 & 1 \times 10 + 2 \times 11 + 3 \times 12 \\
4 \times 7 + 5 \times 8 + 6 \times 9 & 4 \times 10 + 5 \times 11 + 6 \times 12
\end{bmatrix}
\]

\[2 \times 3 \times 3 \times 2 = 2 \times 2\]

`MatrixMultiply(A,B)`

for i = 1 to rows(A)

for j = 1 to cols(B)

\[C[i,j] = 0\]

for k = 1 to cols(A)

\[C[i,j] = C[i,j] + A[i,k] \times B[k,j]\]
\[A_{p*q} B_{q*r} = C_{p*r} \]

Thus the number of multiplications is \(p*q*r \).

Matrix Multiplication Parenthesization

For example, \(A_1A_2A_3 \) can be rewritten as

\[(A_1A_2)A_3 \text{ or } A_1(A_2A_3).\]

Example

Suppose \(A_1 \) is 10x100, \(A_2 \) is 100x5, and \(A_3 \) is 5x50.

Then \(A_1(A_2A_3) \rightarrow 100*5*50 + 10*100*50 = 25,000 + 50,000 = \) ______ scalar multiplications \((A_2A_3 \) is a 100x50 matrix).

\((A_1A_2)A_3 \rightarrow 10*100*5 + 10*5*50 = 5,000 + 2,500 = \) ______ scalar multiplications \((A_1A_2 \) is a 10x5 matrix).

Brute Force Solution: Try all possible parenthesizations

How many? ______

\[A_1A_2...A_k | A_{k+1}...A_{n-1}A_n \]

\[P(k)*P(n-k), \text{ } k = 1 \text{ to } (n-1) \]

\[P(n) = \begin{cases}
1 & n = 1 \\
\sum_{k=1}^{n-1} P(k)P(n-k) & n > 1
\end{cases} \]
See Cormen et al., Problem 13-4 for solving this recurrence.

\[
P(n) = \frac{1}{n} \left(\frac{2n - 2}{n - 1} \right) = \Omega\left(\frac{4^{n-1}}{(n-1)^2}\right), \text{ which is exponential in } n.
\]

Dynamic Programming Solution (4 steps)

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Step 1: Characterize Structure of Optimal Solution

Parenthesization of two subchains \(A_1 \ldots A_k \) and \(A_{k+1} \ldots A_n \) must each be optimal for \(A_1 \ldots A_n \) to be optimal.

Why? A lower cost solution to a subchain reduces the cost of \(A_1 \ldots A_n \). The total cost is calculated as cost(\(A_1 \ldots A_k \)) + cost(\(A_{k+1} \ldots A_n \)) + cost of multiplying two resultant matrices together. The last term is constant no matter what the subproblem solutions are.

We can show that if our subproblem solution is not optimal, a better subproblem solution cost yields a better total cost.

Thus, as is the case with ALL Dynamic Programming solutions, an optimal solution to the problem consists of optimal solutions to subproblems. This is called __________________________.
Step 2: Define recursive solution

Let $A_{i..j} = A_iA_{i+1}..A_j$, where A_i has dimensions $P[i-1] \times P[i]$. P is an array of dimensions.

For now, the subproblems will be finding the minimum number of scalar multiplications $m[i,j]$ for computing $A_{i..j}$ ($1 \leq i \leq j \leq n$).

Define $m[i,j]$.

- If $i = j$, $m[i,j] = 0$ (single matrix).
- If $i < j$, assume an optimal split between A_k and A_{k+1} ($i \leq k < j$).

 $m[i,j] =$ cost of computing $A_{i..k} +$ cost of computing $A_{k+1..j} +$ cost of computing $A_{i..k}A_{k+1..j}$

 $= m[i,k] + m[k+1,j] + P[i-1]P[k]P[j]$

 However, we do not know the value of k, so we have to try all possibilities.

\[
m[i,j] = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k < j} (m[i,k] + m[k+1,j] + P[i-1]P[k]P[j]) & \text{if } i < j
\end{cases}
\]

Note that a recursive algorithm based on this definition would still require exponential time.

Recursive Solution

Consider a recursive solution:

Let $p = <p_0, p_1, .., p_n>$ be the sequence of dimensions.

Recursive-Matrix-Chain($p,i,j)$

if $i = j$
then return 0
m[i,j] = \infty
for k = i to j - 1
 q = Recursive-Matrix-Chain(p,i,k) +
 Recursive-Matrix-Chain(p,k+1,j) +
 P[i-1]P[k]P[j]
 if q < m[i,j]
 then m[i,j] = q
return m[i,j]

Analysis:

\[T(n) = \begin{cases}
\Theta(1) & n = 1 \\
\Theta(1) + \sum_{k=1}^{n-1} (T(k) + T(n - k) + \Theta(1)) & n > 1
\end{cases} \]

\[T(n) = \Theta(1) + \sum_{k=1}^{n-1} (T(k) + T(n - k) + \Theta(1)) \]

\[= \Theta(1) + \sum_{k=1}^{n-1} \Theta(1) + \sum_{k=1}^{n-1} T(k) + \sum_{k=1}^{n-1} T(n - k) \]

\[= \Theta(1) + \Theta(n - 1) + \sum_{k=1}^{n-1} T(k) + \sum_{k=1}^{n-1} T(k) \]

\[= \Theta(n) + 2 \sum_{k=1}^{n-1} T(k) \]

Analysis

\[T(n) = \begin{cases}
\Theta(1) & n = 1 \\
\Theta(n) + 2 \sum_{k=1}^{n-1} T(k) & n > 1
\end{cases} \]

Want to show running time is at least exponential, so show \(T(n) = \Omega(2^n) \).
By substitution method:
Show: \(T(n) = \Omega(2^n) \geq c2^n \)
Assume: \(T(k) \geq c2^k \) for \(k < n \)

\[
T(n) \geq \Theta(n) + 2 \sum_{k=1}^{n-1} c2^k \\
= \Theta(n) + 2c \sum_{k=0}^{n-2} 2^{k+1} \\
= \Theta(n) + 4c \sum_{k=0}^{n-2} 2^k \\
= \Theta(n) + 4c(2^{n-1} - 1) \\
= \Theta(n) + 2c2^n - 4c \\
\geq c2^n
\]

If \(4c - \Theta(n) \leq 0 \), or \(c \leq \Theta(n)/4 \) (okay for large enough \(n \)).
Thus, \(T(n) = \Omega(2^n) \); still exponential.

Duplicate Subproblems
Unique Subproblems

How many unique subproblems?

Assume that $1 \leq i < j \leq n$ or $1 \leq i = j \leq n$.

$$\binom{n}{2} + n$$

All ways of choosing i and j for problem $m[i,j]$ when $i < j$ +

All ways of choosing i and j for problem $m[i,j]$ when $i = j$

$$= \frac{n!}{2!(n-2)!} + n$$

$$= \frac{n(n-1)}{2} + n$$

$$= \frac{n^2}{2} - \frac{n}{2} + n$$

$$= \frac{1}{2}(n^2 + n)$$

$$= \Theta(n^2).$$

Only polynomial number of unique subproblems.

Step 3: Bottom-Up Approach

Compute optimal costs using a Bottom-Up approach.

If we solve smallest subproblems first, then larger problems will be easier to solve.

Define Arrays
• m[1..n, 1..n] for minimum costs
• s[1..n, 1..n] for optimal splits

\[
\begin{array}{cccccc}
A1 & A2 & A3 & A4 & A5 \\
\hline
\text{ws=3} & & & & & \\
i=1 & j=3 & & & & \\
\text{ws=3} & & & & & \\
i=2 & j=4 & & & & \\
\text{ws=3} & & & & & \\
i=3 & j=5 & & & & \\
\end{array}
\]

Dynamic Programming

Matrix-Chain-Order(p)

1. \(n = \text{length}(p) - 1 \)
2. \(\text{for } i = 1 \text{ to } n \)
3. \(m[i,i] = 0 \) ; Chains of length 1
4. \(\text{for } ws = 2 \text{ to } n \)
5. \(\text{for } i = 1 \text{ to } n - (ws - 1) \)
6. \(j = i + (ws - 1) \)
7. \(m[i,j] = \infty \)
8. \(\text{for } k = i \text{ to } j-1 \)
9. \(q = m[i,k] + m[k+1, j] + P[i-1]P[k]P[j] \)
10. \(\text{if } q < m[i,j] \)
11 then $m[i,j] = q$
12 $s[i,j] = k$
13 return m and s

This algorithm requires $\Theta(n^3)$ time and $\Theta(n^2)$ memory.

Step 4: Construct Optimal Solution

Let $A = \langle A_1, A_2, \ldots, A_n \rangle$.

Call Matrix-Chain-Order then Matrix-Chain-Multiply, defined below.

Matrix-Chain-Multiply(A, s, i, j)

if $i < j$

then $x = $ Matrix-Chain-Multiply(A, s, i, $s[i,j]$)

$y = $ Matrix-Chain-Multiply(A, s, $s[i,j]+1$, j)

return Matrix-Multiply(x, y)

else return A_i

Elements of Dynamic Programming

1. Optimal solution to problem involves optimal solutions to subproblems.

2. Of the typically exponential number of subproblems referred to by a recursive solution, only a polynomial number of them are distinct.
Memoization

Top-Down recursive solution that remembers intermediate results.

For example, intermediate results found in m[2,4] are useful in determining the value of m[1,3].
Memoized-Matrix-Chain(p)
1 n = length(p) - 1
2 for i = 1 to n
3 for j = i to n
4 m[i,j] = ∞
5 return Lookup-Chain(p, 1, n)
Lookup-Chain(p, i, j)
1 if m[i,j] < ∞
2 then return m[i,j]
3 if i = j
4 then m[i,j] = 0
5 else for k = i to j-1
6 q = Lookup-Chain(p, i, k) +
7 Lookup-Chain(p, k+1, j) + P[i-1]P[k]P[j]
8 if q < m[i,j]
9 then m[i,j] = q
10 return m[i,j]

In this algorithm each of Θ(n^2) entries is initialized once (line 4) and is filled in by one call to Lookup-Chain.

Each of Θ(n^2) calls to Lookup-Chain takes n steps ignoring recursion, so the total time required is Θ(n^2) * O(n) = O(n^3).

The algorithm requires Θ(n^2) memory.
Longest Common Subsequence (LCS)

Problem: Given two sequences \(X = \langle x_1, \ldots, x_m \rangle \) and \(Y = \langle y_1, \ldots, y_n \rangle \), find the longest subsequence \(Z = \langle z_1, \ldots, z_k \rangle \) that is common to \(x \) and \(y \).

A subsequence is a subset of elements from the sequence with strictly increasing order (not necessarily contiguous).

For example, if \(X = \langle A, B, C, B, D, A, B \rangle \) and \(Y = \langle B, D, C, A, B, A \rangle \), then some common subsequences are:

- \(\langle A \rangle \)
- \(\langle B \rangle \)
- \(\langle C \rangle \)
- \(\langle D \rangle \)
- \(\langle A, A \rangle \)
- \(\langle B, B \rangle \)
- \(\langle B, C, A \rangle \)
- \(\langle B, C, B, A \rangle \) This is one of the longest common subsequences.
- \(\langle B, D, A, B \rangle \) This is one of the longest common subsequences.

Brute Force: Check all \(2^m \) subsequences of \(X \) for an occurrence in \(Y \).
Dynamic Programming

1. Optimal Substructure.

Define: Given $X = \langle x_1, .., x_m \rangle$, the ith prefix of X, $i = 0, .., m$, is $X_i = \langle x_1, .., x_i \rangle$. X_0 is empty.

Theorem 16.1

Let $X = \langle x_1, .., x_m \rangle$ and $Y = \langle y_1, .., y_n \rangle$ be sequences, and $Z = \langle z_1, .., z_k \rangle$ be any LCS of X and Y.

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.

2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.

3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}.

Thus the LCS problem has optimal substructure.

Dynamic Programming

2. Overlapping Subproblems.
Define: \(c[i,j] = \) length of LCS for \(X_i \) and \(Y_j \).
\[
c[i,j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\
\max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j
\end{cases}
\]

Distinct Subproblems

Could write an exponential recursive algorithm, but there are only ___ distinct subproblems.

Solution

Let \(c[i,j] \) be maximum length array.

Let \(b[i,j] \) record the case relating \(X_i, Y_j, \) and \(Z_k \).

```plaintext
LCSLength(x, y) j <--
    m = length(x) +---------
    n = length(y) | \ 
    for i = 1 to m i | \ 
        c[i,0] = 0 ^ | \ 
    for j = 0 to n | | 
        c[0,j] = 0 | | 
    for i = 1 to m | | 
        for j = 1 to n |
            if x[i] = y[j]
                then c[i,j] = c[i-1,j-1] + 1
                    b[i,j] = '\'
                        ; Arrow points up and left
            else if c[i-1,j] >= c[i,j-1]
                then c[i,j] = c[i-1,j]
                    b[i,j] = '^'
                        ; Up arrow
            else c[i,j] = c[i,j-1]
                b[i,j] = 'v'
                    ; Arrow points down and left
```

13
else c[i, j] = c[i, j-1]
b[i, j] = '<'
end if
return c and b

LCSLength is O(mn).

Pseudocode

PrintLCS(b, X, i, j)
if i=0 or j=0
then return
if b[i, j] = '\'
then PrintLCS(b, X, i-1, j-1)
print x[i]
else if b[i, j] = '^'
then PrintLCS(b, X, i-1, j)
else PrintLCS(b, X, i, j-1)

PrintLCS is O(m+n).

0 1 2 3 4 5
y[j] b r o w n
+-------------------------------------
0 x[i] | 0 | 0 | 0 | 0 | 0 | 0 |
+-------------------------------------
1 c | 0 | 0 | 0 | 0 | 0 | 0 |
+-------------------------------------
2 o | 0 | 0 | 0 | \1 | <1 | <1 |
+-------------------------------------

PrintLCS(b, "cow", 3, 5) <
PrintLCS(b, "cow", 3, 4) \
PrintLCS(b, "cow", 2, 3) \
PrintLCS(b, "cow", 1, o w
Optimal Polygon Triangulation

- A polygon is described by \(P = \langle v_0, v_1, \ldots, v_{n-1} \rangle \).

\[\begin{array}{c|c|c|c|c|c|c} \hline \text{w} & 0 & 0 & 0 & 1 & 2 & 2 \\ \hline \end{array} \]

Optimal Polygon Triangulation

- A polygon is **convex** if the line segment between any two points lies on the boundary or the interior.

This polygon is not convex.
• If \(v_i \) and \(v_j \) are not adjacent, segment \(\overline{v_i v_j} \) is a ______.

• A ________________ is a set of chords \(T \) that divides \(P \) into disjoint triangles.

 – No chords intersect
 – \(T \) is maximal (every chord \(\notin T \) intersects a cord \(\in T \)).

Optimal Polygon Triangulation

Problem:

• Given:

 – \(P = \langle v_0, v_1, \ldots, v_{n-1} \rangle \)

 – A weight function \(w \) on triangles formed by \(P \) and \(T \).

• Find \(T \) that minimizes the sum of weights
• Example: \(w(\triangle v_i v_j v_k) = |v_i v_j| + |v_j v_k| + |v_k v_i| \) (Euclidean distance)

• Looks a bit like matrix chaining

• Optimal substructure

 - \(T \) contains \(\triangle v_0 v_k v_n \).

 \[w(T) = w(\triangle v_0 v_k v_n) + m[0, k] + m[k + 1, n]. \]

 - The two subproblem solutions must be \(\square \) or \(\square \)

• This algorithm requires \(\Theta(n^3) \) time.

• This algorithm requires \(\Theta(n^2) \) memory.

Applications