Graph-based Learning

Larry Holder

Computer Science and Engineering
University of Texas at Arlington
Graph-based Learning

- Multi-relational data mining and learning
- SUBDUE graph-based relational learner
 - Discovery
 - Clustering
 - Graph grammar learning
 - Supervised learning
Multi-Relational Data Mining

Looking for patterns involving multiple tables (relations) in a relational database

<table>
<thead>
<tr>
<th>Person</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Last</td>
<td>First</td>
<td>Age</td>
<td>Income</td>
</tr>
<tr>
<td>P1</td>
<td>Doe</td>
<td>John</td>
<td>30</td>
<td>80000</td>
</tr>
<tr>
<td>P2</td>
<td>Doe</td>
<td>Sally</td>
<td>29</td>
<td>90000</td>
</tr>
<tr>
<td>P3</td>
<td>Smith</td>
<td>Robert</td>
<td>35</td>
<td>100000</td>
</tr>
</tbody>
</table>

Multi-Relational Data Mining

Approaches

- Transform to non-relational problem
- First-order logic based
 - Inductive Logic Programming (ILP)
- Graph based
Graph-based Data Mining

Finding all subgraphs g within a set of graph transactions G such that

$$\frac{\text{freq}(g)}{|G|} > t$$

- where t is the minimum support
Graph-based Data Mining

- Systems
 - Apriori-based Graph Mining (AGM)
 - Inokuchi, Washio and Motoda, 2003
 - Frequent Sub-Graph discovery (FSG)
 - Kuramochi and Karypis, 2001
 - Graph-based Substructure pattern mining (gSpan)
 - Yan and Han, 2002
 - Focus on pruning and fast, code-based graph matching
Graph-based Relational Learning

- Finding patterns in graph(s)
 - Discovery
 - Clustering
 - Supervised learning

Diagram:
- Nodes represent individuals:
 - John Doe: Last = John, First = Doe, Age = 30, Income = 80000, Married
 - Robert Smith: Last = Smith, First = Robert, Age = 35, Income = 100000, Married
 - Sally Doe: Last = Doe, First = Sally, Age = 29, Income = 90000

Arrows indicate relationships such as marital status.
Graph-based Relational Learning

- Graph-Based Induction (GBI)
 - Yoshida, Motoda and Indurkhya, 1994
- SUBstructure Discovery Using Examples (SUBDUE)
 - Cook and Holder, 1994

Focus on efficient subgraph generation and compression-based heuristic search
SUBDUE Graph-based Discovery

- Graph representation
- Graph compression and MDL
- Discovery algorithm
- Inexact graph match
- Background knowledge
- Parallel/distributed discovery
Graph Representation

- Input is a labeled (vertices and edges) directed graph
- A substructure is a connected subgraph
- An instance of a substructure is an isomorphic subgraph of the input graph
- Input graph compressed by replacing instances with vertex representing substructure

Input Database

Substructure S1 (graph form)

Compressed Database

- Representing substructures S1, S2, S3, S4
- Triangle (shape) on object
- Square (shape) on object

Diagram: Input Database and Compressed Database with substructures S1, S2, S3, S4 and relationships.
Graph Representation
Minimum Description Length (MDL) principle

- Best theory minimizes description length of theory and the data given theory

Best substructure S minimizes description length of substructure definition $DL(S)$ and compressed graph $DL(G|S)$

$$\min_S (DL(S) + DL(G|S))$$
Discovery Algorithm

1. Create substructure for each unique vertex label

Substructures:
- triangle (4), square (4), circle (1), rectangle (1)

Diagram:
- triangle
 - square
 - rectangle
 - triangle
 - square
 - square
2. Expand best substructures by an edge or edge+neighboring vertex
Discovery Algorithm

3. Keep only best beam-width substructures on queue

4. Terminate when queue is empty or #discovered substructures > limit

5. Compress graph and repeat to generate hierarchical description
DNA Example
Sample SUBDUE Input

d sample.g:

v 1 object
v 2 object
e 1 11 shape
e 2 12 shape
e 3 13 shape
e 4 14 shape
e 5 15 shape
e 6 16 shape
e 7 17 shape
e 8 18 shape
e 9 19 shape
e 10 20 shape
e 11 5 on
e 12 6 on
e 13 7 on
e 14 8 on
e 15 10 on
e 16 9 on
e 17 2 on
e 18 3 on
e 19 4 on
v 20 rectangle
Inexact Graph Match

- Some variations may occur between instances.
- Want to abstract over minor differences.
- Difference = cost of transforming one graph to make it isomorphic to another.
- Match if cost/size < threshold.
Inexact Graph Match

Least-cost match is \{((1,4), (2,3))\}
Inexact Graph Match

- Vertices considered by degree
- Polynomially constrained
 - Greedy after n^k partial mappings considered
 - Suboptimal mappings rare for $k>2$
Background Knowledge

- User-defined substructures
- Two alternative uses
 - Prime search queue
 - Initial graph compression
- Variant of discovery algorithm used to generate instances
Parallel/Distributed Discovery

- Divide graph into P partitions
- Distribute to P processors
- Each processor performs serial discovery on local partition
- Broadcast best substructures, evaluate on other processors
- Master processor stores best global substructures
Graph-based Clustering

- Hierarchical, conceptual clustering
- Previous work defined classification trees
 - Inadequate in relational domains
- Better hierarchical description: classification lattice
 - A cluster can have more than one parent
 - A parent can be at any level (not only one level above)
- Use iterative graph-based discovery
Clustering: DNA
Clustering: DNA

Coverage

- 61%
- 68%
- 71%
Learning Graph Grammars

Graph grammar production: $S \rightarrow P$
- S is a non-terminal
- P is a graph containing terminals and/or non-terminals
- $S \rightarrow P_1 \mid P_2 \mid \ldots \mid P_n$

Recursive production: $S \rightarrow P \ S \mid P$
- P linked to S via a single edge
- Algorithm exponential in number of linking edges
Example Graph Grammar

\[S_2 \rightarrow a \quad S_2 \]

\[\begin{array}{c}
S_2 \\
\quad a \\
\quad b \\
S_3
\end{array} \quad \begin{array}{c}
S_2 \\
\quad a \\
\quad b \\
S_3
\end{array} \]

\[S_3 \rightarrow S_3 \rightarrow c \quad d \quad e \quad f \]
Graph Grammar Learning

SUBDUE Extensions (SubdueGL)
- Each iteration results in a graph grammar production substructure
- Production used to compress graph
 - Replace instances of right-hand side with new vertex labeled with non-terminal on left-hand side
- Iterations continue until entire graph compressed to single non-terminal
SubdueGL Example

- Input graph
 - Edge labels: ‘t’, ‘s’, ‘next’
SubdueGL Example

First production rule

Input graph parsed by first production
SubdueGL Example

Second and third production rules

\[S_2 \rightarrow a \quad S_2 \]
\[b \quad S_3 \]

\[S_3 \rightarrow c \mid d \mid e \mid f \]

Input graph parsed by productions
Graph-Based Supervised Learning

Input now a set of positive graphs and a set of negative graphs.
Graph-Based Supervised Learning

Solution 1

- Find substructure compressing positive graphs, but not negative graphs
- Compress graphs and iterate until no further compression

Problem

- Compressing, instead of removing, partially-covered positive graphs leads to overly-specific hypotheses
Graph-Based Supervised Learning

Solution 2

- Find substructure covering (i.e., subgraph of) positive graphs, but not negative graphs
- \emph{Remove} covered positive graphs and iterate until all covered

Substructure value = 1 - Error

\[
\text{Error} = \frac{\# \text{PosEgsNotCovered} + \# \text{NegEgsCovered}}{\# \text{PosEgs} + \# \text{NegEgs}}
\]
Supervised Learning: Cancer

- Chemical toxicity
- SUBDUE achieved 62% accuracy classifying carcinogenic vs. non-carcinogenic compounds
Application Domains

- **Biochemical domains**
 - Protein data
 - DNA data
 - Toxicology (cancer) data

- **Spatial-temporal domains**
 - Earthquake data
 - Aircraft Safety and Reporting System

- **Web topology and search**

- **Social network analysis**

...
Summary

- Multi-relational data mining and learning
- Graph-based relational learning
 - Discovery
 - Clustering
 - Graph grammar learning
 - Supervised learning
Future Directions

- Efficient graph-based learning from incremental streaming data
- Supervised graphs
 - All examples in one, connected graph
- Graph-based anomaly detection
- Improved scalability
 - Graph and subgraph isomorphism
Further Information

- Graph-based Data Mining
 - http://banzai.uta.edu/gdm

- SUBDUE Project
 - http://ailab.uta.edu/subdue