Concept Learning

Concept Learning: Inferring a boolean-valued function from training examples of its input and output.

- General-to-specific ordering of hypotheses
- Version spaces and candidate elimination algorithm
- Need for inductive bias
A Concept Learning Task

- **EnjoySport concept (Table 2.1)**

<table>
<thead>
<tr>
<th>Example</th>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecst</th>
<th>EnjoySpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>

What is the general concept?
Learning Task

- **Given:**
 - Instances X: Possible days, each described by the attributes Sky, $AirTemp$, $Humidity$, $Wind$, $Water$, $Forecast$
 - Target function c: $EnjoySport : X \rightarrow \{0, 1\}$
 - Hypotheses H: Conjunctions of literals. E.g.
 $$\langle ?, Cold, High, ?, ?, ? \rangle.$$
 - Training examples D: Positive and negative examples of the target function
 $$\langle x_1, c(x_1) \rangle, \ldots, \langle x_m, c(x_m) \rangle$$

- **Determine:** A hypothesis h in H such that $h(x) = c(x)$ for all x in D.

 - Most general hypothesis $\langle ?, ?, ?, ?, ?, ? \rangle$
 - Most specific hypothesis $\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$
Terminology

- Instances or instance space X
 - Set of all possible input items
 - E.g., $x = \langle\text{sunny, warm, normal, strong, warm, same}\rangle$
 * $(3 \cdot 2 \cdot 2 \cdot 2 \cdot 2) = 96$ instances

- Target concept $c : X \rightarrow \{0, 1\}$
 - Concept or function to be learned
 - E.g., $c(x) = 1$ if EnjoySport=yes, $c(x) = 0$ if EnjoySport=no

- Training examples $D = \{\langle x, c(x)\rangle\}$
 - Instance x from X accompanied by target concept value $c(x)$
 - Positive examples, $c(x) = 1$, members of target concept
 - Negative examples, $c(x) = 0$, non-members of target concept
Terminology

- Hypothesis space H, set of all possible hypotheses
 - Depends on choice of representation
 - E.g., conjunctive concepts for EnjoySport
 * $(5 \cdot 4 \cdot 4 \cdot 4 \cdot 4) = 5120$ syntactically distinct hypotheses
 * $(4 \cdot 3 \cdot 3 \cdot 3 \cdot 3) + 1 = 973$ semantically distinct hypotheses
 * Any hypothesis with \emptyset classifies all examples negative
 - Want h in H such that $h(x) = c(x)$ for all x in X

- Inductive learning hypothesis
 - Any hypothesis approximating the target concept well over a sufficiently large set of training examples will also approximate the target concept well for unobserved examples
Concept Learning as Search

- Learning viewed as a search through hypothesis space H for hypothesis consistent with training examples
- General-to-specific ordering of hypotheses
 - Allows more directed search of H
 - Definition [fig2.1]
 * Hypothesis h_1 is more general than or equal to hypothesis h_2 iff $\forall x \in X, h_1(x) = 1 \leftrightarrow h_2(x) = 1$
 * Written $h_1 \geq_g h_2$
 * h_1 (strictly) more general than h_2 ($h_1 >_g h_2$) when $h_1 \geq_g h_2$ and $h_2 \ngeq_g h_1$
 - Also implies $h_2 \leq_g h_1$, h_2 more specific than h_1
 - Defines partial order over H
Finding Maximally-Specific Hypothesis: Find-S

- Find the most specific hypothesis covering all positive examples
- Hypothesis \(h \) covers positive example \(x \) if \(h(x) = 1 \)
- Find-S algorithm [tab2.3]
 - Example from data in [tab2.1]
 - Illustrate in [fig2.2]
- Will \(h \) ever cover a negative example?
 - No, if \(c \) in \(H \) and training examples consistent
- Problems with Find-S
 - Cannot tell if converged on target concept
 - Why prefer the most specific hypothesis?
 - Handling inconsistent training examples due to errors or noise
 - What if more than one maximally-specific consistent hypothesis?
Version Spaces and the Candidate-Elimination Algorithm

- CE finds all hypotheses consistent with training examples
 - Hypothesis h consistent with training D iff $h(x) = c(x)$ for all $(x, c(x)) \in D$
 * Differs from "satisfies" ($h(x) = 1$) in that $h(x)$ may be 0
 - Version Space $V_{S_{H,D}} = \{h \in H \mid \text{consistent}(h, D)\}$

- List-Then-Eliminate algorithm [tab2.4]
 - V_S = list of every hypothesis in H
 - For each training example $(x, c(x))$
 * Remove from V_S any h where $h(x) \neq c(x)$
 - Return V_S
 - Impractical for all but most trivial H’s
Version Spaces and the Candidate-Elimination Algorithm

- Can represent VS with only most general G and most specific S members
 - VS after four EnjoySport training examples [fig2.3]
- VS representation theorem (2.1)
 - All consistent hypotheses fall between S and G according to the ”more general than” partial ordering
- CE algorithm [tab2.5]
 - EnjoySport example [fig2.4-2.7]
 - Final VS independent of training sequence
Remarks on VS’s and CE

- Will CE converge to correct hypothesis?
 - If no errors and target concept in H
 - Convergence: $S = G = \{h_{final}\}$
 - Otherwise, eventually $S = G = \{\}$

- Which training example requested next?
 - Learner may query oracle for example’s classification
 - Ideally, choose example eliminating half of VS
 * Need $\log_2 |VS|$ examples to converge
 - E.g., \langle sunny,warm,normal,light,warm,same\rangle or \langle sunny,warm,high,light,cool,change\rangle
Remarks on VS’s and CE

- Using partially learned concepts
 - If all of S predict positive, then positive [tab2.6,A]
 - If all of G predict negative, then negative [tab2.6,B]
 - If half and half, then don’t know [tab2.6,C]
 - If majority of h’s say pos (neg), then pos (neg) with some confidence [tab2.6,D]

- G can grow exponentially in $|D|$, even for conjunctive H
Inductive Bias

• How does the choice for H affect learning performance?

• Biased hypothesis space
 – EnjoySport H cannot learn constraint [sky = sunny or cloudy]
 – How about $H = $ every possible hypothesis?

• Unbiased learner
 – $H = $ every teachable concept (power set of X)
 * E.g., EnjoySport $|H| = 2^{96} = 10^{28}$ (only 973 by previous H, biased!)
 – $H' = $ arbitrary conjunctions, disjunctions or negations of hypotheses from H
 * E.g., [sky=sunny or cloudy] →
 \(\langle \text{sunny},?,?,?,? \rangle \) or \(\langle \text{cloudy},?,?,?,? \rangle \)
 – Problem using CE with H'
 * $S = $ disjunction of positive examples
 * $G = $ negated disjunction of negative examples
 * Thus, no generalization
 * Each unseen instance covered by exactly half of VS
Futility of bias-free learning

- Fundamental property of inductive learning
 - Learners making no a priori assumptions about target concept have no rational basis for classifying unseen instances

- Inductive bias
 - Informal: any preference on the space of all possible hypotheses other than consistency with training examples
 - Formal: set of assumptions B such that the classification of an unseen instance x_i by a learner L on training data D can be inferred deductively [fig2.8]
 - E.g., for CE, $B = \{(c \in H)\}$
 * Where classification only by unanimous decision of VS

- Inductive bias permits comparison of learners
 - Rote learner: no bias
 - CE: $c \in H$
 - Find-S: $(c \in H)$ and $(c(x) = 0$ for all instances not covered)
Summary

- Concept learning as search
- General-to-specific ordering
- Version spaces and CE algorithm
- S and G boundaries characterize learner’s uncertainty
- Learner can generate useful queries
- Inductive leaps possible only if learner is biased