1. Draw the small-signal equivalent circuits for the following three BJT circuits:

(A) \[i_C \rightarrow V_{CC} \]

(B) \[V_{CC} \]

(C) \[V_{CC} \]

2. Design a common emitter amplifier with \(V_{CC} = 1.8 \) V and a power budget \(P = 1 \) mW while achieving maximum voltage gain for the following BJT operating conditions:
 a. edge of saturation (\(V_{BC} = 0 \) V)
 b. soft saturation (\(V_{CE} = 0.4 \) V)
 c. strong saturation (\(V_{CE} = 0.2 \) V)
(Hint: determine \(RC \) and voltage gain in each case)

3. Assuming the following circuit is biased with \(I_C = 1 \) mA and \(RC = 1 \) k\(\Omega \). Given \(\beta = 100 \) and \(VCC = 10 \) V, determine the small signal voltage gain and the input and output impedances.