Problem 1:

In free space the electric field vector given by \(\vec{E}(z, t) = 10 \cos(2\pi 10^8 t - \beta z)\hat{a}_x \) V/m is incident on a 20 cm diameter receiving antenna dish. Determine the following

(i) amplitude of the electric field,
(ii) Time average Poynting vector
(iii) The power incident on the dish
(iv) Magnetic field vector \(\vec{H} \)

Problem 2:

A thick slab of polystyrene (\(\sigma = 10^{-16} S/m; \varepsilon_r = 2.6 \)) occupies \(z > 0 \). If at the surface of the slab \(z=0 \), the electric field \(\vec{E}(0, t) = 10 \cos(3\pi 10^7 t)\hat{a}_y \)

Determine the following

(i) electric field \(\vec{E}(z,t) \),
(ii) Magnetic field vector \(\vec{H}(z,t) \)
(iii) Time average Poynting vector
(iv) Frequency \(f \)
(v) Wave vector \(\beta \)

Problem 3:

The plane \(z=0 \) separates two lossless, non-magnetic media. Medium 1 (\(z<0 \)) has \(\varepsilon_r = 4 \) and medium 2 (\(z>0 \)) is air. If the incident electric field is given by:

\(\vec{E}_i(z, t) = 10 \cos(\omega t - \beta_1 z)\hat{a}_x \)

Determine the following:

(i) Intrinsic impedances \(\eta_1 \) and \(\eta_2 \)
(ii) the incident fields \(\vec{E}_i(z) \) and \(\vec{H}_i(z) \)
(iii) Reflection and transmission coefficients
(iv) The reflected fields \(\vec{E}_r(z) \) and \(\vec{H}_r(z) \)
(v) the transmitted fields \(\vec{E}_t(z) \) and \(\vec{H}_t(z) \)
(vi) Incident time average power density
(vii) reflected time average power density
(viii) transmitted time average power density

Problem 4:

Calculate the skin depth at 1 GHz for (a) copper, (b) silver, (c) gold, and (c) Nickel.
Problem 5:

The electric field \(\bar{E}_i(z,t) = 10 \cos(2 \pi 10^8 t - \beta_1 z) \hat{a}_x \) V/m is incident from air \((z<0)\) onto a nonmagnetic lossy medium \((z>0)\) characterized by \(\sigma = 10^{-2} \, S/m; \varepsilon_r = 2.0\). Determine the following:

(i) wave vector \(\beta_1\) in air.
(ii) Loss tangent in medium 2
(iii) Intrinsic impedances \(\eta_1\) and \(\eta_2\),
(iv) Reflection and transmission coefficients
(v) The reflected fields \(\bar{E}_r(z)\) and \(\bar{H}_r(z)\)
(vi) the transmitted fields \(\bar{E}_t(z)\) and \(\bar{H}_t(z)\)
(vii) Incident time average power density
(viii) transmitted time average power density

Problem 6: (show all work)

(a) What is the polarization and tilt angle of

\[\bar{E}_i(z,t) = 10 \cos(\omega t - \beta_1 z) \hat{a}_x + 5 \cos(\omega t - \beta_1 z) \hat{a}_y \]

(b) What is the polarization of the following fields:

(i) \(\bar{E}_i(z,t) = 10 \cos(\omega t - \beta_1 z) \hat{a}_x + 10 \cos(\omega t - \beta_1 z + 270^\circ) \hat{a}_y \)

(ii) \(\bar{E}_i(z,t) = 10 \cos(\omega t - \beta_1 z) \hat{a}_x + 20 \cos(\omega t - \beta_1 z - 270^\circ) \hat{a}_y \)

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity (\sigma) (S/m)</th>
<th>(\mu_r)</th>
<th>(\varepsilon_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>5.8x10^7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Gold</td>
<td>4.1x10^7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>6.2x10^7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.5x10^7</td>
<td>600</td>
<td>1.0</td>
</tr>
</tbody>
</table>