
Chapter 13

Parallel Processing

The FDTD method is said to be “trivially parallelizable,” meaning that there are several simple

ways in which the algorithm can be divided into tasks that can be executed simultaneously. For

example, in a 3D simulation one might write an FDTD program that simultaneously updates the

Ex, Ey, and Ez components of the electric field. These updates depend on the magnetic field and

previous values of themselves—they are not a function of each other and hence can be updated in

parallel. Then, Hx, Hy, and Hz might be updated simultaneously. Alternatively, one might divide

the computational domain into distinct, non-overlapping regions and assign different processors

to update the fields in those regions. This way fields in each of the regions could be updated

simultaneously.

Here we will example two approaches to parallelizing a program. The threading approach

typically use one computer to run a program. A threaded program is designed in such a way as to

split the total computation between two or more “threads.” If the computer has multiple processors,

these threads can be executed simultaneously. Each of the threads can share the same memory

space, i.e., the same set of variables. An alternative approach to parallelization uses the Message

Passing Interface (MPI) protocol. This protocol allows different computers to run programs that

pass information back and forth. MPI is ideally suited to partitioning the computational domain

into multiple non-overlapping regions. Different computers are used to update the fields in the

different regions. To update the fields on the interfaces with different regions, the computers have

to pass information back and forth about the tangential fields along those interfaces.

In this chapter we provide some simple examples illustrating the use of threads and MPI.

13.1 Threads

There are different threading packages available. Perhaps the most common is the POSIX threads

(pthreads) package. To use pthreads, you must include the header file pthread.h in your pro-

gram. When linking, you must link to the pthread library (which is accomplished with the compiler

flag -lpthread).

There are many functions related to pthreads. On a UNIX-based system on which pthreads are

installed, a list of these functions can typically be obtained with the command man -k pthread

and then one can see the individual man-pages to obtain details about a specific function.

Lecture notes by John Schneider. parallel-processing.tex

331

332 CHAPTER 13. PARALLEL PROCESSING

Despite all these functions, it is possible to do a great deal of useful programming using only

two functions: pthread create() and pthread join(). As the name implies, a thread is

created by the function pthread create(). You can think of a thread as a separate process

that happens to share all the variables and memory with the rest of your program. One of the

arguments of pthread create() will specify what this thread should do, specifically what

function it should run.

The prototype of pthread create() is:

1 int pthread_create(

2 pthread_t *thread_id, // ID number for thread

3 const pthread_attr_t *attr, // controls thread attributes

4 void *(*function)(void *), // function to be executed

5 void *arg // argument of function

6);

The first argument is a pointer to the thread identifier (which is simply a number but we do not

actually care about the details of how the ID is specified). This ID is set by pthread create(),

i.e., one would typically be interested in the returned value—it is not something that is set prior to

pthread create() being called.

The second argument is a pointer to a variable that controls the attributes of the thread. In this

case, the value of this variable is established prior to the call of the function. This pointer can be

set to NULL in which case the thread is created with the default attributes. Attributes control things

like the “joinability” of the thread and the scheduling of threads. Typically one can simply use the

default settings. The pthread t and pthread attr t data types are defined in pthread.h.

The third and fourth arguments specify what function the thread should call and what argu-

ment should be passed to the function. Notice that the prototype says the function takes a void

pointer as an argument and returns a void pointer. Keep in mind that “void” pointers are, in fact,

simply generic pointers to memory. We can typecast these pointers to what they actually are.

Thus, in practice, it would be perfectly acceptable for the function to take, for example, an ar-

gument of a pointer to a structure and return a pointer to a double. One would merely have to

do the appropriate typecasting. If the function does not take an argument, the fourth argument of

pthread create() is set to NULL.

Once a new thread is created using pthread create(), the program continues execution

at the next command—the program does not wait for the thread to complete whatever the thread

has been assigned to do. The function pthread join() is used to block further execution of

commands until the specified thread has completed. pthread join() can also be used to access

the return-value of the function that was run in a thread. The prototype of pthread join() is:

1 int pthread_join(

2 pthread_t thread_id, // ID of thread to "join"

3 void **value_pntr // address of function’s return value

4);

13.2. THREAD EXAMPLES 333

13.2 Thread Examples

To demonstrate the use of pthreads, let us first consider a standard serial implementation of a

program where first one function is called and then another is called. The program is shown in

Program 13.1.

Program 13.1 serial-example.c: Standard serial implementation of a program where first

one function is called and then another. (These function are merely intended to perform a lengthy

calculation. They do not do anything particularly useful.)

1 /* serial (i.e., non-threaded) implementation */

2 #include <stdio.h>

3

4 void func1();

5 void func2();

6

7 double a, b; // global variables

8

9 int main() {

10

11 func1(); // call first function

12 func2(); // call second function

13

14 printf("a: %f\n", a);

15 printf("b: %f\n", b);

16

17 return 0;

18 }

19

20 /* do some lengthy calculation which sets the value of the the global

21 variable "a"*/

22 void func1() {

23 int i, j;

24

25 for (j=0;j<4000;j++)

26 for (i=0;i<1000000;i++)

27 a = 3.1456*j+i;

28

29 return;

30 }

31

32 /* do another lengthy calculation which happens to be the same as

33 done by func1() except here the value of global variable "b" is set

34 */

35 void func2() {

36 int i, j;

334 CHAPTER 13. PARALLEL PROCESSING

37

38 for (j=0;j<4000;j++)

39 for (i=0;i<1000000;i++)

40 b = 3.1456*j+i;

41

42 return;

43 }

In this program the functions func1() and func2() do not take any arguments nor do they

explicitly return any values. Instead, the global variables a and b are used to communicate values

back to the main function. Neither func1() nor func2() are intended to do anything useful.

There are merely used to perform some lengthy calculation. Assuming the executable version

of this program is named serial-example, the execution time can be obtained, on a typical

UNIX-based system, by issuing the command “time serial-example”.

Now, let us consider a threaded implementation of this same program. The appropriate code is

shown in Program 13.2.

Program 13.2 threads-example1.c: A threaded implementation of the program shown in

Program 13.1.

1 /* threaded implementation */

2 #include <stdio.h>

3 #include <pthread.h>

4

5 void *func1();

6 void *func2();

7

8 double a, b;

9

10 int main() {

11 pthread_t thread1, thread2; // ID’s for threads

12

13 /* create threads which run in parallel -- one for each function */

14 pthread_create(&thread1, NULL, func1, NULL);

15 pthread_create(&thread2, NULL, func2, NULL);

16

17 /* wait for first thread to complete */

18 pthread_join(thread1,NULL);

19 printf("a: %f\n", a);

20

21 /* wait for second thread to complete */

22 pthread_join(thread2,NULL);

23 printf("b: %f\n", b);

24

25 return 0;

13.2. THREAD EXAMPLES 335

26 }

27

28 void *func1() {

29 int i, j;

30

31 for (j=0;j<4000;j++)

32 for (i=0;i<1000000;i++)

33 a = 3.1456*j+i;

34

35 return NULL;

36 }

37

38 void *func2() {

39 int i, j;

40

41 for (j=0;j<4000;j++)

42 for (i=0;i<1000000;i++)

43 b = 3.1456*j+i;

44

45 return NULL;

46 }

In Program 13.2 func1() and func2() are slightly different from the functions of the same

name used in 13.1. In both these programs these functions perform the same calculations, but

in 13.1 these functions returned nothing. However pthread create() assumes the function

returns a void pointer (i.e., a generic pointer to memory). Since in this example these functions do

not need to return anything, they simply return NULL (which is effectively zero).

If Program 13.2 is run on a computer that has two (or more) processors, one should observe

that the execution time (as measured by a “wall clock”) is about half of what it was for Program

13.2. Again, assuming the executable version of Program 13.2 is named threads-example1,

the execution time can be obtained by issuing the command “time threads-example1”.

This timing command will typically return three values: the “wall-clock” time (the actual time that

elapsed from the start to the completion of the program), the CPU time (the sum of time spent by

all processors used to run the program), and system time (time used by the operating system to

run things necessary for your program to run, but not directly associated with your program). You

should observe that ultimately nearly the same amount of CPU time was used by both the threaded

and serial programs but the threaded program required about half the wall-clock time. In the case

of the second program two processors were working simultaneously and hence the wall-clock time

was half as much, or nearly so. In fact, there is slightly more computation involved in the threaded

program than the serial program since there is some computational overhead associated with the

threads.

Let us now modify the first function so that it returns a value, specifically a pointer to a double

where we simply store an arbitrary number (in this case 10.0). The appropriate code is shown in

Program 13.3.

336 CHAPTER 13. PARALLEL PROCESSING

Program 13.3 threads-example2.c: Modified version of Program 13.2 where now func1()

has a return value.

1 /* threaded implementation -- returning a value */

2 #include <stdio.h>

3 #include <stdlib.h> // needed for malloc()

4 #include <pthread.h>

5

6 double *func1(); // now returns a pointer to a double

7 void *func2();

8

9 double a, b;

10

11 int main() {

12 double *c; // used for return value from func1

13 pthread_t thread1, thread2; // ID’s for threads

14

15 // typecast the return value of func1 to a void pointer

16 pthread_create(&thread1, NULL, (void *)func1, NULL);

17 pthread_create(&thread2, NULL, func2, NULL);

18

19 // typecast the address of c to a void pointer to a pointer

20 pthread_join(thread1,(void **)&c);

21 printf("a,c: %f %f\n", a, *c);

22

23 pthread_join(thread2,NULL);

24 printf("b: %f\n", b);

25

26 return 0;

27 }

28

29 double *func1() {

30 int i, j;

31

32 double *c; // c is a pointer to a double

33

34 // allocate space to store a double

35 c=(double *)malloc(sizeof(double));

36 *c = 10.0;

37

38 for (j=0;j<4000;j++)

39 for (i=0;i<1000000;i++)

40 a = 3.1456*j+i;

41

42 return c;

43 }

44

13.2. THREAD EXAMPLES 337

45 void *func2() {

46 int i, j;

47

48 for (j=0;j<4000;j++)

49 for (i=0;i<1000000;i++)

50 b = 3.1456*j+i;

51

52 return NULL;

53 }

Note that in this new version of func1() we declare c to be a pointer to a double and then, in

line 35, allocate space where the double can be stored and then, finally, store 10.0 at this location.

This is rather complicated and it might seem that a simpler approach would be merely to declare

c to be a double and then return the address of c, i.e., end the function with return &c. Unfor-

tunately this would not work. The problem with that approach is that declaring c to be a double

would make it a local variable (one only known to func1()) whose memory would disappear

when the function returned.

The second argument of pthread join() in line 20 provides the pointer to the return value

of the function that was executed by the thread. Since c by itself is a pointer to a double, &c is

a pointer to a pointer to a double, i.e., of type (double **). However, pthread join()

assumes the second argument is a void pointer to a pointer and hence a typecast is used to keep the

compiler from complaining.

In the next example, shown in Program 13.4, func1() and func2() are modified so that

they each take an argument. These arguments are the double variables e and d that are set in

main().

Program 13.4 threads-example3.c: Functions func1() and func2() have been modi-

fied so that they now take arguments.

1 /* threaded implementation -- passing arguments and

2 returning a value */

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <pthread.h>

6

7 double *func1(double *);

8 void *func2(double *);

9

10 double a, b;

11

12 int main() {

13 double *c; // used for return value from func1

14 double d=3.0, e=2.0; // arguments passed to functions

15 pthread_t thread1, thread2; // ID’s for threads

338 CHAPTER 13. PARALLEL PROCESSING

16

17 pthread_create(&thread1, NULL, (void *)func1, (void *)&d);

18 pthread_create(&thread2, NULL, (void *)func2, (void *)&e);

19

20 pthread_join(thread1,(void **)&c);

21 printf("a,c: %f %f\n", a, *c);

22

23 pthread_join(thread2,NULL);

24 printf("b: %f\n", b);

25

26 return 0;

27 }

28

29 double *func1(double *arg) {

30 int i, j;

31

32 double *c;

33

34 c=(double *)malloc(sizeof(double));

35 *c = 10.0;

36

37 for (j=0;j<4000;j++)

38 for (i=0;i<1000000;i++)

39 a = (*arg)*j+i;

40

41 return c;

42 }

43

44 void *func2(double *arg) {

45 int i, j;

46

47 for (j=0;j<4000;j++)

48 for (i=0;i<1000000;i++)

49 b = (*arg)*j+i;

50

51 return NULL;

52 }

In all these examples func1() and func2() have performed essentially the same computa-

tion. The only reason there were two separate functions is that func1() set the global variable a

while func2() set the global variable b. However, knowing that we can both pass arguments and

obtain return values, it is possible to have a single function in our program. It can be called mul-

tiple times and simultaneously. Provided the function does not use global variables, the different

calls will not interfere with each other.

A program that uses a single function to accomplish what the previous programs used two

function for is shown in Program 13.5.

13.2. THREAD EXAMPLES 339

Program 13.5 threads-example4.c: The global variables have been removed and a single

function func() is called twice. The function func() and main() communicate by passing

arguments and checking returns values (instead of via global variables).

1 /* threaded implementation -- passing an argument and checking

2 return the value from a single function */

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <pthread.h>

6

7 double *func(double *);

8

9 int main() {

10 double *a, *b; // used for return values

11 double d=3.0, e=2.0;

12 pthread_t thread1, thread2; // ID’s for threads

13

14 pthread_create(&thread1, NULL, (void *)func, (void *)&d);

15 pthread_create(&thread2, NULL, (void *)func, (void *)&e);

16

17 pthread_join(thread1,(void **)&a);

18 printf("a: %f\n", *a);

19

20 pthread_join(thread2,(void **)&b);

21 printf("b: %f\n", *b);

22

23 return 0;

24 }

25

26 double *func(double *arg) {

27 int i, j;

28

29 double *a;

30

31 a=(double *)malloc(sizeof(double));

32

33 for (j=0;j<4000;j++)

34 for (i=0;i<1000000;i++)

35 *a = (*arg)*j+i;

36

37 return a;

38 }

Threads provide a simple way to obtain parallelization. However, one may find that in practice

they do not provide the benefits one might expect when applied to FDTD programs. FDTD is

340 CHAPTER 13. PARALLEL PROCESSING

both computational expensive and memory-bandwidth intensive. A great deal of data must be

passed between memory and the CPU. Often the bottleneck is not the CPU but rather the speed of

the “bus” that carries data between memory and the CPU. Multi-processor machines do not have

multiple memory busses. Thus, splitting an FDTD computation between multiple CPU’s on the

same computer will have those CPU’s all requesting memory from a bus that is already acting at

full capacity. These CPU’s will have to wait on the arrival of the requested memory. Therefore,

in practice when using threaded code with N threads on a computer with N processors, one is

unlikely to see a computation-time reduction that is anywhere close to the hypothetical maximum

reduction of 1/N .

13.3 Message Passing Interface

The message passing interface (MPI) is a standardized protocol, or set of protocols, which have

been implemented on a wide range of platforms. MPI facilitates the communication between

processes whether they are running on a single host or multiple hosts. As with pthreads, MPI

provides a large number of functions. These functions allow the user to control many aspects

of the communication or they greatly simplify what would otherwise be quite cumbersome tasks

(such as the efficient distribution of data to a large number of hosts). Despite the large number of

MPI functions, just six are needed to begin exploiting the benefits of parallelization.

Before considering those six functions, it needs to be said that one must have the supporting

MPI framework installed on each of the hosts to be used. Different implementations of the MPI

protocol (or the MPI 2 protocol) are available from the Web. For example, LAM MPI is available

from www.lam-mpi.org but it is no longer being actively developed. Instead, several MPI-

developers have joined together to work on OpenMPI which is available from www.open-mpi.

org. Alternatively, MPICH2 is available from www.mcs.anl.gov/research/projects/

mpich2. Installation of these packages is relatively trivial (at least that is the case when using

Linux or Mac OS X), but some of the details associated with getting jobs to run can be somewhat

complicated (for example, ensuring that access is available to remote machines without requiring

explicit typing of a password).

There is a great deal of MPI documentation available from the Web (there are also a few

books written on the subject). A good resource for getting started is computing.llnl.gov/

tutorials/mpi/. In fact, Lawrence Livermore has many useful pages related to threads, MPI,

and other aspects of high-performance and parallel processing. You can find the material by going

to computing.llnl.gov and following the link to “Training.”

Returning to the six functions needed to use MPI in a meaningful way, two of them concern

initializing and closing the MPI set-up, two deal with sending and receiving information, and two

deal with determining the number of processes and which particular process number is associated

with the given invocation. Programs which use MPI must include the header file mpi.h. Before

any other MPI functions are called, the function MPI Init() must be called. The last MPI

function called should be MPI Finalize(). Thus, a valid, but useless, MPI program is shown

in Program 13.6.

Program 13.6 useless-mpi.c: A trivial, but valid, MPI program.

13.4. OPEN MPI BASICS 341

1 #include <mpi.h>

2 #include <stdio.h>

3

4 int main(int argc, char *argv[]) {

5

6 MPI_Init(&argc,&argv);

7

8 printf("I don’t do anything useful yet.\n");

9

10 MPI_Finalize();

11

12 return 0;

13 }

When an MPI program is run, each process runs the same program. In this case, there is nothing

to distinguish between the processes. They will all generate the same line of output. If there were

100 processes, you would see 100 lines of “I don’t do anything useful yet.”

13.4 Open MPI Basics

At this point we need to ask the question: What does it mean to run an MPI program? Ultimately

many copies of the same program are run. Each copy may reside on a different computer and, in

fact, multiple copies may run on the same computer. The details concerning how one gets these

copies to run are somewhat dependent on the MPI package one uses. Here we will briefly describe

the steps associated with the Open MPI package.

When Open MPI is installed, several executable files will be placed on your system(s), e.g.,

mpicc, mpiexe, mpirun, etc. On most systems by default these files will be installed in the

directory /usr/local/bin (but one can specify that the files should be installed elsewhere if

so desired). One must ensure that the directory where these excutables reside is in the search path.

When using MPI it is usually necessary to compile the source code in a special way. Instead

of using the gcc compiler on UNIX/Linux machines, one would use mpicc (mpicc is merely a

wrapper that ultimately calls the underlying compiler that one would have used normally). So, for

example, to compile the MPI program given above, one would issue a command such as

mpicc -Wall -O useless-mpi.c -o useless-mpi

One can now run the executable file useless-mpi. The command to do this is either

mpirun or mpiexec (these commands are synonymous). There are numerous arguments that

can be specified with the most important being the number of processes. The following command

says to run four copies of useless-mpi:

mpiexec -np 4 useless-mpi

342 CHAPTER 13. PARALLEL PROCESSING

But where, precisely, is this run? In this case four copies of the program are run on the local host.

That is not precisely what we want—we are interested in distributing the job to different machines.

There are multiple ways in which one can excercise control of the running of MPI programs and

we will explore just a few.

First, let us assume a “multicomputer” consists of five nodes with names node01, node02,

node03, node04, and node05. To make things more interesting, let us further assume that

node01 is one particular brand of computer and the other nodes are a different brand (e.g., per-

haps node01 is an Intel-based machine while the other nodes are PowerPC-based machines).

Additionally assume that node01 has four processors while each of the other nodes has two pro-

cessors.

We can specify some of this information in a “hostfile.” For now, let us exclude node01 since

it is a different architecture. A hostfile that describes a multicomputer consisting of the remaining

four nodes might be

node05 slots=2

node04 slots=2

node03 slots=2

node02 slots=2

Let us assume this information is stored in the file my hostfile. The slots are the number of

processors on a particular machine. If one does not specify the number of slots, it is assumed to be

one.

Let us further assume the executable useless-mpi exists in a director called ˜/Ompi

(where the tilde is recognized as a shorthand for the user’s home directory on a UNIX/Linux

machine). If all the computers mount the same file structure, this may actually be the exact

same directory that all the machines are sharing. In that case there would only be one copy of

useless-mpi. Alternatively, each of the computers may have their own local copy of a di-

rectory named ˜/Ompi. In that case there would have to be a local copy of the excutable file

useless-mpi present on each of the individual computers.

One could now run eight copies of the program by issuing the following command:

mpirun -np 8 -hostfile my_hostfile ˜/Ompi/useless-mpi

This command could be issued from any of the nodes. Note that the number of processes does not

have to match the number of slots. The following command will launch 12 copies of the program

mpirun -np 12 -hostfile my_hostfile ˜/Ompi/useless-mpi

However, it will generally be best if one can match the job to the physical configuration of the

multicomputer, i.e., one job per “slot.”

In order to incorporate node01 into the multicomputer, things become slightly more compli-

cated because executables compiled for node01 will not run on the other nodes and vice versa.

Thus one must compile separate versions of the program on the different machines. Let’s assume

that was done and on each of the nodes a copy of useless-mpi was place in the local directory

/tmp (i.e., there is a copy of this directory and this executable on each of the nodes). The hostfile

my hostfile could then be changed to

13.5. RANK AND SIZE 343

node05 slots=2

node04 slots=2

node03 slots=2

node02 slots=2

node01 slots=4

Note that there are four slots specified for node01 instead of two. The command to run 12 copies

of the program would now be

mpirun -np 12 -hostfile my_hostfile /tmp/useless-mpi

By introducing more arguments to the command line, one can exercise more fine-grained con-

trol of the executation of the program. Let us again assume that there is one common directory

˜/Ompi that all the machines share. Let us further assume two version of useless-mpi have

been compiled: one for PowerPC-based machines called useless-mpi-ppc and one for Intel-

based machines called useless-mpi-intel. We can use a command that does away with the

hostfile and instead provide all the details explicitly:

mpirun -host node05,node04,node03,node02 \

-np 8 ˜/Ompi/useless-mpi-ppc \

-host node01 -np 4 ˜/Ompi/useless-mpi-intel

Note that the backslashes here are quoting the end of the line. This command can be given on a

single line or can be given on multiple lines, as shown here, if one “quotes” the carriage return.

13.5 Rank and Size

To do more meaningful tasks, it is typically necessary for each processor to know how many to-

tal processes there are and which process number is assigned to a particular invocation. In this

way, each processor can do something different based on its process number. In MPI the pro-

cess number is known as the rank. The number of processes can be determined with the function

MPI Comm size() and the rank can be determined with MPI Comm rank(). The code shown

in Program 13.7 is a slight modification of the previous program that now incorporates these func-

tions.

Program 13.7 find-rank.c: An MPI program where each process can determine the total

number of processes and its individual rank (i.e., process number).

1 #include <mpi.h>

2 #include <stdio.h>

3

4 int main(int argc, char *argv[]) {

5 int rank, size;

6

7 MPI_Init(&argc,&argv);

344 CHAPTER 13. PARALLEL PROCESSING

8

9 MPI_Comm_size(MPI_COMM_WORLD, &size);

10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

11 printf("I have rank %d out of %d total.\n",rank,size);

12

13 MPI_Finalize();

14

15 return 0;

16 }

Assume this is run with four total processes. The output will be similar to this:

I have rank 1 out of 4 total.

I have rank 0 out of 4 total.

I have rank 2 out of 4 total.

I have rank 3 out of 4 total.

Note that the size is 4, but rank ranges between 0 and 3 (i.e., size− 1). Also note that there is

no guarantee that the processes will report in rank order.

The argument MPI COMM WORLD is known as an MPI communicator. A communicator essen-

tially specifies the processes which are grouped together. One can create different communicators,

i.e., group different sets of processes together, and this can simplify handling certain tasks for

a particular problem. However, we will simply use MPI COMM WORLD which specifies all the

processes.

13.6 Communicating Between Processes

To communicate between processes we can use the commands MPI Send() and MPI Recv().

MPI Send() has arguments of the form:

MPI_Send(&buffer, // address where data stored

count, // number of items to send

type, // type of data to send

dest, // rank of destination process

tag, // programmer-specified ID

comm); // MPI communicator

where buffer is an address where the data to be sent is stored (for example, the address of the

start of an array), count is the number of elements or items to be sent, type is the type of

data to be sent, dest is the rank of the process to which this information is being sent, tag is

a programmer-specified number to identify this data, and comm is an MPI communicator (which

we will leave as MPI COMM WORLD). The type is similar to the standard C data types, but it is

specified using MPI designations. Some of those are: MPI INT, MPI FLOAT, and MPI DOUBLE,

corresponding to the C data types of int, float, and double (other types, some of which are specific

to MPI, such as MPI BYTE and MPI PACKED, exist too).

MPI Recv() has arguments of the form:

13.6. COMMUNICATING BETWEEN PROCESSES 345

MPI_Recv(&buffer,count,type,source,tag,comm,&status);

In this case buffer is the address where the received data is to be stored. The meaning of count,

type, tag, and comm are unchanged from before. source is the rank of the process sending

the data. The status is a pointer to a structure, specifically an MPI status structure which is

specified in mpi.h. This structure contains the rank of the source and the tag number.

Program 13.8 demonstrates the use of MPI Send() and MPI Recv(). Here the process

with rank 0 serves as the master process. It collects input from the user which will subsequently

be sent to the other processes. Specifically, the parent process prompts the user for as many values

(doubles) as there are number of processes minus one. The master process then sends one number

to each of the other processes. These processes do a calculation based on the number they receive

and then send the result back to the master. The master prints this received data and then the

program terminates.

Program 13.8 sendrecv.c: An MPI program that sends information back and forth between a

master process and slave processes.

1 #include <mpi.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4

5 int main(int argc, char *argv[]) {

6 int i, rank, size, tag_out=10, tag_in=11;

7 MPI_Status status;

8

9 MPI_Init(&argc,&argv);

10

11 MPI_Comm_size(MPI_COMM_WORLD, &size);

12 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

13

14 if (rank==0) {

15 /* "master" process collects and distributes input */

16 double *a, *b;

17

18 /* allocate space for input and result */

19 a=malloc((size-1)*sizeof(double));

20 b=malloc((size-1)*sizeof(double));

21

22 /* prompt user for input */

23 printf("Enter %d numbers: ",size-1);

24 for (i=0; i<size-1; i++)

25 scanf("%lf",a+i);

26

27 /* send values to other processes */

28 for (i=0; i<size-1; i++)

29 MPI_Send(a+i,1,MPI_DOUBLE,i+1,tag_out,MPI_COMM_WORLD);

346 CHAPTER 13. PARALLEL PROCESSING

30

31 /* receive results calculated by other process */

32 for (i=0; i<size-1; i++)

33 MPI_Recv(b+i,1,MPI_DOUBLE,i+1,tag_in,MPI_COMM_WORLD,&status);

34

35 for (i=0; i<size-1; i++)

36 printf("%f\n",b[i]);

37

38 } else {

39 /* "slave" process */

40 int j;

41 double c, d;

42

43 /* receive input from the master process */

44 MPI_Recv(&c,1,MPI_DOUBLE,0,tag_out,MPI_COMM_WORLD,&status);

45

46 /* do some silly number crunching */

47 for (j=0;j<4000;j++)

48 for (i=0;i<100000;i++)

49 d = c*j+i;

50

51 /* send the result back to master */

52 MPI_Send(&d,1,MPI_DOUBLE,0,tag_in,MPI_COMM_WORLD);

53 }

54

55 MPI_Finalize();

56

57 return 0;

58 }

The six commands covered so far are sufficient to parallelize any number of problems. How-

ever, there is some computational overhead associated with parallelizing the code. Additionally,

there is often a significant cost associated with communication between processes, especially if

those processes are running on different hosts and the network linking those hosts is slow.

The functions MPI Send() and MPI Recv() are blocking commands. They do not return

until they have accomplished the requested send or receive. In some cases, especially if there is a

large amount of data to transmit, this can be costly. There are also nonblocking or “immediate”

versions of these functions. For these functions control is returned to the calling function without a

guarantee of the send or receive having been accomplished. In this way the program can continue

some other useful task while the communication is taking place. When one must ensure that

the communication is finished, the function MPI Wait() provides a blocking mechanism that

suspends execution until the specified communication is completed. The immediate send and

receive functions are of the form:

MPI_Isend(&buffer,count,type,dest,tag,comm,&request);

MPI_Irecv(&buffer,count,type,source,tag,comm,&request);

13.6. COMMUNICATING BETWEEN PROCESSES 347

The arguments to these functions are the same as the blocking version except the final argument is

now a pointer to an MPI Request structure instead of an MPI Status. The wait command has

the following form:

MPI_Wait(&request,&status);

Note that the communication for which the waiting is being done is specified by the “request,”

not the “status.” So, if there are multiple transmissions which are being done asynchronously,

one may have to create an array of MPI Request’s. If one is not concerned with the status of the

transmissions, one does not have to define a separate status for each transmission.

The code shown in Program 13.9 illustrates the use of non-blocking send and receive. In this

case the master process sends the numbers to the other processes via MPI Isend(). However, the

master does not bother to ensure that the send was performed. Instead, the master will ultimately

wait for the other process to communicate the result back. The fact that the other processes are

sending information back serves as confirmation that the data was sent from the master. After

sending the data, the master process then calls MPI Irecv(). There is one call for each of the

“slave” processes. After calling these functions, MPI Wait() is used to ensure the data has been

received before printing the results. The code associated with the slave processes is unchanged

from before.

Program 13.9 nonblocking.c: An MPI program that uses non-blocking sends and receives.

1 #include <mpi.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4

5 int main(int argc, char *argv[]) {

6 int i, rank, size, tag_out=10, tag_in=11;

7 MPI_Status status;

8 MPI_Request *request_snd, *request_rcv;

9

10 MPI_Init(&argc,&argv);

11

12 MPI_Comm_size(MPI_COMM_WORLD, &size);

13 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

14

15 if (rank==0) {

16 /* "master" process collects and distributes input */

17 double *a, *b;

18

19 /* allocate space for input and result */

20 a=malloc((size-1)*sizeof(double));

21 b=malloc((size-1)*sizeof(double));

22

23 /* allocate space for the send and receive requests */

24 request_snd=malloc((size-1)*sizeof(MPI_Request));

348 CHAPTER 13. PARALLEL PROCESSING

25 request_rcv=malloc((size-1)*sizeof(MPI_Request));

26

27 /* prompt user for input */

28 printf("Enter %d numbers: ",size-1);

29 for (i=0; i<size-1; i++)

30 scanf("%lf",a+i);

31

32 /* non-blocking send of values to other processes */

33 for (i=0; i<size-1; i++)

34 MPI_Isend(a+i,1,MPI_DOUBLE,i+1,tag_out,MPI_COMM_WORLD,request_snd+i);

35

36 /* non-blocking reception of results calculated by other process */

37 for (i=0; i<size-1; i++)

38 MPI_Irecv(b+i,1,MPI_DOUBLE,i+1,tag_in,MPI_COMM_WORLD,request_rcv+i);

39

40 /* wait until we have received all the results */

41 for (i=0; i<size-1; i++)

42 MPI_Wait(request_rcv+i,&status);

43

44 for (i=0; i<size-1; i++)

45 printf("%f\n",b[i]);

46

47 } else {

48 /* "slave" process */

49 int j;

50 double c, d;

51

52 /* receive input from the master process */

53 MPI_Recv(&c,1,MPI_DOUBLE,0,tag_out,MPI_COMM_WORLD,&status);

54

55 /* do some silly number crunching */

56 for (j=0;j<4000;j++)

57 for (i=0;i<100000;i++)

58 d = c*j+i;

59

60 /* send the result back to master */

61 MPI_Send(&d,1,MPI_DOUBLE,0,tag_in,MPI_COMM_WORLD);

62 }

63

64 MPI_Finalize();

65

66 return 0;

67 }

Compared to the previous version of this program, this version runs over 30 percent faster

on a dual-processor G5 when using five processes. (By “over 30 percent faster” is meant that if

13.6. COMMUNICATING BETWEEN PROCESSES 349

the execution time for the previous code is normalized to 1.0, the execution time using the non-

blocking calls is approximately 0.68.)

350 CHAPTER 13. PARALLEL PROCESSING

