1. **Options**: Use “exit this room” high-level action

2. **Hierarchical Reinforcement Learning**: Attack, Mine Gold, Explore subtasks

3. **Learning from Demonstration**: Control Mario and have him learn to mimic you

4. **Ensembles**: Combine multiple classifiers to improve accuracy

5. **Unsupervised Learning**: Which players have similar playing styles?

6. **Active Learning**: Program asks which points should be labeled

7. **Other?**
• Monday: Project idea
• What to cover next?
Combination Techniques

1. \[R'(s, a) = R(s, a) + (\text{weight} \times \hat{H}(s, a)). \]

2. \[\overrightarrow{f'} = \overrightarrow{f} \cdot \text{append}(\hat{H}(s, a)). \]

3. Initially train \(Q(s, a) \) to approximate \((\text{constant} \times \hat{H}(s, a)). \)

4. \[Q'(s, a) = Q(s, a) + \text{constant} \times \hat{H}(s, a). \]

5. \[A' = A \cup \text{argmax}_a[\hat{H}(s, a)]. \]

6. \[a = \text{argmax}_a[Q(s, a) + \text{weight} \times \hat{H}(s, a)]. \]

7. \[P(a = \text{argmax}_a[\hat{H}(s, a)]) = p. \text{ Otherwise original RL agent’s action selection mechanism is used.} \]

8. \[R'(s_t, a) = R(s, a) + \text{constant} \times (\phi(s_t) - \phi(s_{t-1})), \text{ where } \phi(s) = \max_a H(s, a). \]
Combination Techniques

1. \(R'(s, a) = R(s, a) + (\text{weight} \times \hat{H}(s, a)) \).

2. \(\overrightarrow{f'} = \overrightarrow{f} \cdot \text{append}(\hat{H}(s, a)) \).

3. Initially train \(Q(s, a) \) to approximate \((\text{constant} \times \hat{H}(s, a)) \).

4. \(Q'(s, a) = Q(s, a) + \text{constant} \times \hat{H}(s, a) \).

5. \(A' = A \cup \arg \max_a [\hat{H}(s, a)] \).

6. \(a = \arg \max_a [Q(s, a) + \text{weight} \times \hat{H}(s, a)] \).

7. \(P(a = \arg \max_a [\hat{H}(s, a)]) = p. \) Otherwise original RL agent’s action selection mechanism is used.

8. \(R'(s_t, a) = R(s, a) + \text{constant} \times (\phi(s_t) - \phi(s_{t-1})) \), where \(\phi(s) = \max_a H(s, a) \).
Combination Techniques

1. \(R'(s, a) = R(s, a) + (\text{weight} \times \hat{H}(s, a)) \).

2. \(\overrightarrow{v} = \overrightarrow{f}.\text{append} (\hat{H}(s, a)) \).

3. Initially \(\pi(s, a) \) is approximated \(\text{constant} \times \hat{H}(s, a) \).

4. \(Q'(s, a) = Q(s, a) + \text{constant} \times \hat{H}(s, a) \).

5. \(A' = A \cup \text{argmax}_a [\hat{H}(s, a)] \).

6. \(a = \text{argmax}_a [Q(s, a) + \text{weight} \times \hat{H}(s, a)] \).

7. \(P(a = \text{argmax}_a [\hat{H}(s, a)]) = p. \) Otherwise original RL agent’s action selection mechanism is used.

8. \(R'(s_t, a) = R(s, a) + \text{constant} \times (\phi(s_t) - \phi(s_{t-1})), \) where \(\phi(s) = \max_a H(s, a) \).
Combination Techniques

1. \(R'(s, a) = R(s, a) + (\text{weight} \times \hat{H}(s, a)) \).
2. \(\vec{f}' = \vec{f}.\text{append}(\hat{H}(s, a)) \).
3. Initially train \(Q(s, a) \) to approximate \((\text{constant} \times \hat{H}(s, a)) \).
4. \(Q'(s, a) = Q(s, a) + \text{constant} \times \hat{H}(s, a) \).
5. \(A' = A \cup \arg\max_a[\hat{H}(s, a)] \).
6. \(a = \arg\max_a[Q(s, a) + \text{weight} \times \hat{H}(s, a)] \).
7. \(P(a = \arg\max_a[\hat{H}(s, a)]) = p. \) Otherwise original RL agent’s action selection mechanism is used.
8. \(R'(s_t, a) = R(s, a) + \text{constant} \times (\phi(s_t) - \phi(s_{t-1})) \), where \(\phi(s) = \max_a H(s, a) \).
Combination Techniques

1. \[R'(s, a) = R(s, a) + (\text{weight} \times \hat{H}(s, a)). \]
2. \[\vec{f}' = \vec{f} \cdot \text{append}(\hat{H}(s, a)). \]
3. Initially train \(Q(s, a) \) to approximate \((\text{constant} \times \hat{H}(s, a)) \).
4. \[Q'(s, a) = Q(s, a) + \text{constant} \cdot \hat{H}(s, a) \]
5. \[A' = A \cup \text{argmax}_a[\hat{H}(s, a)]. \]
6. \[a = \text{argmax}_a[Q(s, a) + \text{weight} \times \hat{H}(s, a)]. \]
7. \[P(a = \text{argmax}_a[\hat{H}(s, a)]) = p. \] Otherwise original RL agent’s action selection mechanism is used.
8. \[R'(s_t, a) = R(s, a) + \text{constant} \times (\phi(s_t) - \phi(s_{t-1})), \]
where \(\phi(s) = \max_a H(s, a). \)
Experiments

• **domain**: Mountain Car
• **RL algorithm**: Sarsa(\(\lambda\))
 – **features**: a grid of 2D Gaussian RBFs over state; one grid for each action
 – **representation of Q**: linear model
 – **initialization of Q**: both opt. and pess.
 – **updates**: gradient descent
• 30 runs of 500 episodes
Experiments

Two predictive models used (from among 19 trainers):

\(\hat{H}_1 \): middling performance (9th)

\(\hat{H}_2 \): best performance
Defining success

Outperforming:

On the metrics:
- cumulative reward
- final performance

On both \hat{H}_1 and \hat{H}_2
(for comparison, TAMER-only mean performance is -109.1)
Almost complete successes

\[R'(s, a) = R(s, a) + (weight \times \hat{H}(s, a)) \]

and

\[Q'(s, a) = Q(s, a) + constant \times \hat{H}(s, a) \]

Outperforming:

On the metrics:

<table>
<thead>
<tr>
<th>TAMER-only</th>
<th>RL-only</th>
</tr>
</thead>
<tbody>
<tr>
<td>cumulative reward</td>
<td>only on (\hat{H}_1)</td>
</tr>
<tr>
<td>final performance</td>
<td></td>
</tr>
</tbody>
</table>
Complete successes

\[a = \arg \max_a [Q(s, a) + \text{weight} \times \hat{H}(s, a)]. \]

and

\[P(a = \arg \max_a [\hat{H}(s, a)]) = p. \] Otherwise original RL agent’s action selection mechanism is used.

Outperforming:

On the metrics:

<table>
<thead>
<tr>
<th>TAMER-only</th>
<th>RL-only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lessons

1. Optimistic vs. pessimistic initialization

Optimistic

Pessimistic

Bias initial actions toward a_1
Lessons

2. Biasing action selection was most effective

• better than shaping rewards
Summary

• background: TAMER Framework for learning from interactive shaping
• explored ways of combining TAMER with RL
• identified several successful techniques and some general lessons

• future: more domains, more RL algorithms