The Shortest Path Problem
Shortest-Path Algorithms

- Find the “shortest” path from point A to point B
- “Shortest” in time, distance, cost, ...
- Numerous applications
 - Map navigation
 - Flight itineraries
 - Circuit wiring
 - Network routing
Shortest Path Problems

Weighted graphs:

- Input is a weighted graph where each edge \((v_i, v_j)\) has cost \(c_{i,j}\) to traverse the edge.
- Cost of a path \(v_1v_2...v_N\) is \(\sum_{i=1}^{N-1} c_{i,i+1}\).
- **Goal:** to find a smallest cost path.

Unweighted graphs:

- Input is an unweighted graph.
 - i.e., all edges are of equal weight.
- **Goal:** to find a path with smallest number of hops.
Shortest Path Problems

Single-source shortest path problem

- Given a weighted graph $G=(V,E)$, and a source vertex s, find the minimum weighted path from s to every other vertex in G.

Some algorithms:

- **Weighted:**
 - Dijkstra’s algo

- **Unweighted:**
 - Simple BFS
Point to Point SP problem

Given $G(V,E)$ and two vertices A and B, find a shortest path from A (source) to B (destination).

Solution:

1) Run the code for Single Source Shortest Path using source as A.
2) Stop algorithm when B is reached.
All Pairs Shortest Path

Problem

Given $G(V,E)$, find a shortest path between all pairs of vertices.

Solutions:

(brute-force)

Solve Single Source Shortest Path for each vertex as source

There are more efficient ways of solving this problem (e.g., Floyd-Warshall algo).
Negative Weights

- Graphs can have negative weights
- E.g., arbitrage
 - Shortest positive-weight path is a net gain
 - Path may include individual losses
- Problem: Negative weight cycles
 - Allow arbitrarily-low path costs
- Solution
 - Detect presence of negative-weight cycles
Unweighted Shortest Paths

- No weights on edges
- Find shortest length paths
- Same as weighted shortest path with all weights equal
- Breadth-first search

\[O(|E| + |V|) \]
Unweighted Shortest Paths

- For each vertex, keep track of
 - Whether we have visited it (known)
 - Its distance from the start vertex (d_v)
 - Its predecessor vertex along the shortest path from the start vertex (p_v)

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Unweighted Shortest Paths

void Graph::unweighted(Vertex s)
{
 for each Vertex v
 {
 v.dist = INFINITY;
 v.known = false;
 }

 s.dist = 0;

 for(int currDist = 0; currDist < NUM_VERTICES; currDist++)
 for each Vertex v
 if(!v.known && v.dist == currDist)
 {
 v.known = true;
 for each Vertex w adjacent to v
 if(w.dist == INFINITY)
 {
 w.dist = currDist + 1;
 w.path = v;
 }
 }
}

Solution 1: Repeatedly iterate through vertices, looking for unvisited vertices at current distance from start vertex s.

Running time: O(|V|^2)
Unweighted Shortest Paths

```cpp
void Graph::unweighted( Vertex s )
{
    Queue<Vertex> q;

    for each Vertex v
        v.dist = INFINITY;

    s.dist = 0;
    q.enqueue( s );

    while( !q.isEmpty() )
    {
        Vertex v = q.dequeue();

        for each Vertex w adjacent to v
            if( w.dist == INFINITY )
            {
                w.dist = v.dist + 1;
                w.path = v;
                q.enqueue( w );
            }
    }
}
```

Solution: Ignore vertices that have already been visited by keeping only unvisited vertices (distance = ∞) on the queue.

Running time: $O(|E|+|V|)$
Unweighted Shortest Paths

Initial State

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

v_3 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

v_1 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_3</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

v_6 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_3</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_1</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Q: $v_3, v_1, v_6, v_6, v_2, v_4, v_2, v_4$

v_2 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>3</td>
<td>v_2</td>
</tr>
<tr>
<td>v_6</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

v_4 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>3</td>
<td>v_2</td>
</tr>
<tr>
<td>v_5</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

v_5 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>T</td>
<td>3</td>
<td>v_2</td>
</tr>
<tr>
<td>v_5</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

v_7 Dequeued

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>T</td>
<td>3</td>
<td>v_2</td>
</tr>
<tr>
<td>v_5</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Q: $v_4, v_5, v_5, v_7, v_7, empty$
Weighted Shortest Paths

- Dijkstra’s algorithm
 - **GREEDY strategy:**
 - Always pick the next closest vertex to the source
 - Use priority queue to store unvisited vertices by distance from s
 - After deleteMin v, update distances of remaining vertices adjacent to v using decreaseKey
 - Does not work with negative weights
Dijkstra’s Algorithm

/**
 * PSEUDOCODE sketch of the Vertex structure.
 * In real C++, path would be of type Vertex *,
 * and many of the code fragments that we describe
 * require either a dereferencing * or use the
 * -> operator instead of the . operator.
 * Needless to say, this obscures the basic algorithmic ideas.
 */

struct Vertex
{
 List adj; // Adjacency list
 bool known;
 DistType dist; // DistType is probably int
 Vertex path; // Probably Vertex *, as mentioned above
 // Other data and member functions as needed
};

Cpt S 223. School of EECS, WSU
Dijkstra
void Graph::dijkstra(Vertex s)
{
 for each Vertex v
 {
 v.dist = INFINITY;
 v.known = false;
 }

 s.dist = 0;

 for(; ;)
 {
 Vertex v = smallest unknown distance vertex;
 if(v == NOT_A_VERTEX)
 break;
 v.known = true;

 for each Vertex w adjacent to v
 if(!w.known)
 if(v.dist + cvw < w.dist)
 {
 // Update w
 decrease(w.dist to v.dist + cvw);
 w.path = v;
 }
 }
}

BuildHeap: $O(|V|)$

DeleteMin: $O(|V| \log |V|)$

DecreaseKey: $O(|E| \log |V|)$

Total running time: $O(|E| \log |V|)$
Why Dijkstra Works

- **Hypothesis**
 - A least-cost path from X to Y contains least-cost paths from X to every city on the path to Y
 - E.g., if \(X \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow Y\) is the least-cost path from X to Y, then
 - \(X \rightarrow C_1 \rightarrow C_2 \rightarrow C_3\) is the least-cost path from X to C3
 - \(X \rightarrow C_1 \rightarrow C_2\) is the least-cost path from X to C2
 - \(X \rightarrow C_1\) is the least-cost path from X to C1

This is called the “Optimal Substructure” property.
Why Dijkstra Works

PROOF BY CONTRADICTION:

Assume hypothesis is false

- I.e., Given a least-cost path P from X to Y that goes through C, there is a better path P' from X to C than the one in P

Show a contradiction

- But we could replace the subpath from X to C in P with this lesser-cost path P'
- The path cost from C to Y is the same
- Thus we now have a better path from X to Y
- But this violates the assumption that P is the least-cost path from X to Y

Therefore, the original hypothesis must be true
/**
 * Print shortest path to v after dijkstra has run.
 * Assume that the path exists.
 */
void Graph::printPath(Vertex v)
{
 if(v.path != NOT_A VERTEX)
 {
 printPath(v.path);
 cout << " to ";
 }
 cout << v;
}
What about graphs with negative edges?

Will the $O(|E| \log |V|)$ Dijkstra’s algorithm work as is?

Solution:
Do not mark any vertex as “known”.
Instead allow multiple updates.

<table>
<thead>
<tr>
<th>deleteMin</th>
<th>Updates to dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>V_2.dist = 3</td>
</tr>
<tr>
<td>V_2</td>
<td>V_4.dist = 4, V_3.dist = 5</td>
</tr>
<tr>
<td>V_4</td>
<td>No change</td>
</tr>
<tr>
<td>V_3</td>
<td>No change and so v_4.dist will remain 4. Correct answer: v_4.dist should be updated to -5</td>
</tr>
</tbody>
</table>
Negative Edge Costs

```cpp
void Graph::weightedNegative(Vertex s )
{
    Queue<Vertex> q;

    for each Vertex v
        v.dist = INFINITY;

    s.dist = 0;
    q.enqueue( s );

    while( !q.isEmpty( ) )
    {
        Vertex v = q.dequeue( );

        for each Vertex w adjacent to v
            if( v.dist + cvw < w.dist )
                // Update w
                w.dist = v.dist + cvw;
                w.path = v;
                if( w is not already in q )
                    q.enqueue( w );
    }
}
```

Running time: $O(|E| \cdot |V|)$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Updates to dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>V_1</td>
<td>V_2.dist = 3</td>
</tr>
<tr>
<td>V_2</td>
<td>V_2</td>
<td>V_4.dist = 4, V_3.dist = 5</td>
</tr>
<tr>
<td>V_4, V_3</td>
<td>V_4</td>
<td>No updates</td>
</tr>
<tr>
<td>V_3</td>
<td>V_3</td>
<td>V_4.dist = -5</td>
</tr>
<tr>
<td>V_4</td>
<td>V_4</td>
<td>No updates</td>
</tr>
</tbody>
</table>
Negative Edge Costs

```cpp
void Graph::weightedNegative(Vertex s )
{
    Queue<Vertex> q;

    for each Vertex v
        v.dist = INFINITY;

    s.dist = 0;
    q.enqueue( s );

    while( !q.isEmpty( ) )
    {
        Vertex v = q.dequeue( );

        for each Vertex w adjacent to v
            if( v.dist + cvw < w.dist )
            { // Update w
                w.dist = v.dist + cvw;
                w.path = v;
                if( w is not already in q )
                    q.enqueue( w );
            }
    }
}

Running time: \( O(|E| \cdot |V|) \)
```

Negative weight cycles?
Shortest Path Problems

- Unweighted shortest-path problem: $O(|E| + |V|)$
- Weighted shortest-path problem
 - No negative edges: $O(|E| \log |V|)$
 - Negative edges: $O(|E| \cdot |V|)$
- Acyclic graphs: $O(|E| + |V|)$
- No asymptotically faster algorithm for single-source/single-destination shortest path problem
Course Evaluation Site in now Open!

http://skylight.wsu.edu/s/053eadf6-6157-44ce-92ad-cbc26bde3b53.srv