Finite Automata

Reading: Chapter 2
Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols.
- Recognizer for “Regular Languages”

- **Deterministic Finite Automata (DFA)**
 - The machine can exist in only one state at any given time.
- **Non-deterministic Finite Automata (NFA)**
 - The machine can exist in multiple states at the same time.
Deterministic Finite Automata - Definition

- A Deterministic Finite Automaton (DFA) consists of:
 - Q ==> a finite set of states
 - Σ ==> a finite set of input symbols (alphabet)
 - q_0 ==> a start state
 - F ==> set of accepting states
 - δ ==> a transition function, which is a mapping between $Q \times \Sigma$ ==> Q

- A DFA is defined by the 5-tuple:
 - $\{Q, \Sigma, q_0, F, \delta\}$
What does a DFA do on reading an input string?

- **Input**: a word w in Σ^*
- **Question**: Is w acceptable by the DFA?
- **Steps**:
 - Start at the “start state” q_0
 - For every input symbol in the sequence w do
 - Compute the next state from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, the current state is one of the accepting states (F) then **accept** w
 - Otherwise, **reject** w.
Regular Languages

- Let $L(A)$ be a language \textit{recognized} by a DFA A.
 - Then $L(A)$ is called a “\textit{Regular Language}”.

- Locate regular languages in the Chomsky Hierarchy
The Chomsky Hierarchy

A containment hierarchy of classes of formal languages
Example #1

- Build a DFA for the following language:
 - \(L = \{w \mid w \text{ is a binary string that contains 01 as a substring}\} \)

- Steps for building a DFA to recognize \(L \):
 - \(\Sigma = \{0, 1\} \)
 - Decide on the states: \(Q \)
 - Designate start state and final state(s)
 - \(\delta \): Decide on the transitions:
 - “Final” states == same as “accepting states”
 - Other states == same as “non-accepting states”
Regular expression: (0+1)*01(0+1)*

DFA for strings containing 01

- What makes this DFA deterministic?
- Q = \{q_0, q_1, q_2\}
- \(\Sigma = \{0, 1\}\)
- start state = \(q_0\)
- \(F = \{q_2\}\)

Transition table:

<table>
<thead>
<tr>
<th>states</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>*(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

- What if the language allows empty strings?
Example #2

Clamping Logic:
- A clamping circuit waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we’ll design a DFA that waits for two consecutive 1s in a row before clamping on.

- Build a DFA for the following language:
 \[L = \{ w \mid w \text{ is a bit string which contains the substring } 11 \} \]

- State Design:
 - \(q_0 \): start state (initially off), also means the most recent input was not a 1
 - \(q_1 \): has never seen 11 but the most recent input was a 1
 - \(q_2 \): has seen 11 at least once
Example #3

- Build a DFA for the following language:
 \[L = \{ w \mid w \text{ is a binary string that has even number of 1s and even number of 0s} \} \]
Extension of transitions (δ) to Paths ($\hat{\delta}$)

- $\hat{\delta} (q, w) = \text{destination state from state } q \text{ on input string } w$

- $\hat{\delta} (q, wa) = \delta (\hat{\delta}(q, w), a)$

Work out example #3 using the input sequence $w=10010$, $a=1$:

- $\hat{\delta} (q_0, wa) = ?$
Language of a DFA

A DFA A accepts string w if there is a path from q_0 to an accepting (or final) state that is labeled by w

- i.e., $L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$

- i.e., $L(A) =$ all strings that lead to an accepting state from q_0
Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) is of course “non-deterministic”
 - Implying that the machine can exist in more than one state at the same time
 - Transitions could be non-deterministic

Each transition function therefore maps to a set of states
Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - \(Q \) ==> a finite set of states
 - \(\Sigma \) ==> a finite set of input symbols (alphabet)
 - \(q_0 \) ==> a start state
 - \(F \) ==> set of accepting states
 - \(\delta \) ==> a transition function, which is a mapping between \(Q \times \Sigma \) ==> subset of \(Q \)

- An NFA is also defined by the 5-tuple:
 - \(\{ Q, \Sigma, q_0, F, \delta \} \)
How to use an NFA?

- **Input**: a word w in Σ^*
- **Question**: Is w acceptable by the NFA?
- **Steps**:
 - Start at the “start state” q_0
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed and if at least one of the current states is a final state then accept w;
 - Otherwise, reject w.
Regular expression: \((0+1)^*01(0+1)^*\)

NFA for strings containing 01

Why is this non-deterministic?

What will happen if at state q1 an input of 0 is received?

- \(Q = \{q_0, q_1, q_2\}\)
- \(\Sigma = \{0, 1\}\)
- start state = \(q_0\)
- \(F = \{q_2\}\)

Transition table:

<table>
<thead>
<tr>
<th>states</th>
<th>symbols</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td></td>
<td>{(q_0, q_1)}</td>
<td>{(q_0)}</td>
</tr>
<tr>
<td>(q_1)</td>
<td></td>
<td>(\Phi)</td>
<td>{(q_2)}</td>
</tr>
<tr>
<td>(*q_2)</td>
<td></td>
<td>{(q_2)}</td>
<td>{(q_2)}</td>
</tr>
</tbody>
</table>
Note: Omitting to explicitly show error states is just a matter of design convenience (one that is generally followed for NFAs), and i.e., this feature should not be confused with the notion of non-determinism.

What is an “error state”?

- A DFA for recognizing the key word “while”

 ![DFA Diagram]

- An NFA for the same purpose:

 ![NFA Diagram]

Transitions into a dead state are implicit.
Example #2

- Build an NFA for the following language:
 \[L = \{ w \mid w \text{ ends in } 01 \} \]

- Other examples
 - Keyword recognizer (e.g., if, then, else, while, for, include, etc.)
 - Strings where the first symbol is present somewhere later on at least once
Extension of δ to NFA Paths

- **Basis:** $\hat{\delta} (q, \varepsilon) = \{q\}$

- **Induction:**
 - Let $\hat{\delta} (q_0, w) = \{p_1, p_2, \ldots, p_k\}$
 - $\delta (p_i, a) = S_i$ for $i=1, 2, \ldots, k$
 - Then, $\hat{\delta} (q_0, wa) = S_1 U S_2 U \ldots U S_k$
Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w

- $L(N) = \{ w | \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$
Advantages & Caveats for NFA

- Great for modeling regular expressions
 - String processing - e.g., grep, lexical analyzer

- Could a non-deterministic state machine be implemented in practice?
 - Probabilistic models could be viewed as extensions of non-deterministic state machines
 (e.g., toss of a coin, a roll of dice)
 - They are not the same though
 - A parallel computer could exist in multiple “states” at the same time
Technologies for NFAs

- Micron’s Automata Processor (introduced in 2013)
- 2D array of MISD (multiple instruction single data) fabric w/ thousands to millions of processing elements.
- 1 input symbol = fed to all states (i.e., cores)
- Non-determinism using circuits
- http://www.micronautomata.com/
But, DFAs and NFAs are equivalent in their power to capture languages!!

Differences: DFA vs. NFA

DFA
1. All transitions are deterministic
 - Each transition leads to exactly one state
2. For each state, transition on all possible symbols (alphabet) should be defined
3. Accepts input if the last state visited is in F
4. Sometimes harder to construct because of the number of states
5. Practical implementation is feasible

NFA
1. Some transitions could be non-deterministic
 - A transition could lead to a subset of states
2. Not all symbol transitions need to be defined explicitly (if undefined will go to an error state – this is just a design convenience, not to be confused with “non-determinism”)
3. Accepts input if *one of* the last states is in F
4. Generally easier than a DFA to construct
5. Practical implementations limited but emerging (e.g., Micron automata processor)
Equivalence of DFA & NFA

Theorem:
A language L is accepted by a DFA if and only if it is accepted by an NFA.

Proof:
1. If part:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides…)

2. Only-if part is trivial:
 - Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.
Proof for the if-part

- **If-part**: A language L is accepted by a DFA if it is accepted by an NFA
- Rephrasing…
- Given any NFA N, we can construct a DFA D such that $L(N) = L(D)$

How to convert an NFA into a DFA?

- **Observation**: In an NFA, each transition maps to a subset of states
- **Idea**: Represent:

 - each “subset of NFA_states” \rightarrow a single “DFA_state”

Subset construction
NFA to DFA by subset construction

- Let \(N = \{Q_N, \Sigma, \delta_N, q_0, F_N\} \)
- **Goal:** Build \(D = \{Q_D, \Sigma, \delta_D, \{q_0\}, F_D\} \) s.t. \(L(D) = L(N) \)
- **Construction:**
 1. \(Q_D = \) all subsets of \(Q_N \) (i.e., power set)
 2. \(F_D = \) set of subsets \(S \) of \(Q_N \) s.t. \(S \cap F_N \neq \emptyset \)
 3. \(\delta_D : \) for each subset \(S \) of \(Q_N \) and for each input symbol \(a \) in \(\Sigma \):
 - \(\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a) \)
NFA to DFA construction: Example

- $L = \{ w \mid w \text{ ends in 01} \}$

NFA:

- $0,1$
- $q_0 \rightarrow 0 \rightarrow q_1 \rightarrow 1 \rightarrow q_2$

DFA:

- δ_D
- $[q_0] \rightarrow 0 \rightarrow [q_0]$ [q_0, q_1] [q_0]
- $[q_0, q_1] \rightarrow 0 \rightarrow [q_0, q_1]$
- $[q_0, q_1] \rightarrow 1 \rightarrow [q_0, q_2]$
- $[q_0, q_2] \rightarrow 1 \rightarrow [q_0, q_2]$

Transitions Table:

<table>
<thead>
<tr>
<th>δ_N</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>q_1</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>q_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Steps:

0. Enumerate all possible subsets
1. Determine transitions
2. Retain only those states reachable from $\{q_0\}$
NFA to DFA: Repeating the example using LAZY CREATION

- \(L = \{w \mid w \text{ ends in } 01\} \)

NFA:

\[
\begin{array}{c}
q_0 \quad q_1 \quad q_2 \\
0 \quad 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\delta_N & 0 & 1 \\
q_0 & \{q_0, q_1\} & \{q_0\} \\
q_1 & \emptyset & \{q_2\} \\
q_2 & \emptyset & \emptyset \\
\end{array}
\]

DFA:

\[
\begin{array}{c}
[q_0] \quad [q_0, q_1] \\
0 \quad 1 \\
1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\delta_D & 0 & 1 \\
[q_0] & [q_0, q_1] & [q_0] \\
[q_0, q_1] & [q_0, q_2] & \\
[q_0, q_2] & \\
\end{array}
\]

Main Idea:
Introduce states as you go (on a need basis)
Correctness of subset construction

Theorem: If D is the DFA constructed from NFA N by subset construction, then $L(D)=L(N)$

Proof:
- Show that $\delta_D(\{q_0\},w) \equiv \delta_N(q_0,w) \text{, for all } w$

Using induction on w’s length:
- Let $w = xa$
 - $\delta_D(\{q_0\},xa) \equiv \delta_D(\delta_N(q_0,x), a) \equiv \delta_N(q_0,w)$
A bad case where
\#states(DFA) >> \#states(NFA)

- \(L = \{w \mid w \text{ is a binary string s.t., the } k^{\text{th}} \text{ symbol from its end is a 1}\} \)

- NFA has \(k+1 \) states

- But an equivalent DFA needs to have at least \(2^k \) states

(Pigeon hole principle)
- \(m \) holes and \(>m \) pigeons
 - \(\Rightarrow \) at least one hole has to contain two or more pigeons
Applications

- Text indexing
 - inverted indexing
 - For each unique word in the database, store all locations that contain it using an NFA or a DFA

- Find pattern P in text T
 - Example: Google querying

- Extensions of this idea:
 - PATRICIA tree, suffix tree
A few subtle properties of DFAs and NFAs

- The machine never really terminates.
 - It is always waiting for the next input symbol or making transitions.
- The machine decides when to **consume** the next symbol from the input and when to **ignore** it.
 - (but the machine can never **skip** a symbol)
- => A transition can happen even **without** really consuming an input symbol (think of consuming \(\varepsilon \) as a free token) – if this happens, then it becomes an \(\varepsilon \)-NFA (see next few slides).
- A single transition **cannot** consume more than one (non-\(\varepsilon \)) symbol.
FA with ε-Transitions

- We can allow explicit ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

Definition: ε-NFAs are those NFAs with at least one explicit ε-transition defined.

- ε-NFAs have one more column in their transition table
Example of an ε-NFA

$L = \{w \mid w \text{ is empty, or if non-empty will end in } 01\}$

- ε-closure of a state q, $ECLOSE(q)$, is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of ε-transitions.
To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their \(\varepsilon \)-closure states as well.

Example of an \(\varepsilon \)-NFA

\[L = \{ w \mid w \text{ is empty, or if non-empty will end in } 01 \} \]

Simulate for \(w=101 \):

Table of \(\delta_\varepsilon \)

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{q_0,q_1}</td>
<td>{q_0}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\emptyset)</td>
<td>{q_2}</td>
<td>{q_1}</td>
</tr>
<tr>
<td>(*q_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{q_2}</td>
</tr>
</tbody>
</table>

ECLOSE(\(q_0' \))

ECLOSE(\(q_0 \))
To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their \(\varepsilon \)-closure states as well.

Example of another \(\varepsilon \)-NFA

Simulate for \(w=101 \):

\[
\begin{array}{c|c|c|c}
\delta_E & 0 & 1 & \varepsilon \\
\hline
*q'_0 & \emptyset & \emptyset & \{q'_0, q_0, q_3\} \\
q_0 & \{q_0,q_1\} & \{q_0\} & \{q_0,q_3\} \\
q_1 & \emptyset & \{q_2\} & \{q_1\} \\
*q_2 & \emptyset & \emptyset & \{q_2\} \\
q_3 & \emptyset & \{q_2\} & \{q_3\} \\
\end{array}
\]
Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA

Implication: $\text{DFA} \equiv \text{NFA} \equiv \varepsilon\text{-NFA}$
- (all accept Regular Languages)
Eliminating ε-transitions

Let $E = \{Q_E, \Sigma, \delta_E, q_0, F_E\}$ be an ε-NFA.

Goal: To build DFA $D = \{Q_D, \Sigma, \delta_D, \{q_D\}, F_D\}$ s.t. $L(D) = L(E)$

Construction:

1. $Q_D = \text{all reachable subsets of } Q_E \text{ factoring in } \varepsilon\text{-closures}$
2. $q_D = \text{ECLOSE}(q_0)$
3. $F_D = \text{subsets } S \text{ in } Q_D \text{ s.t. } S \cap F_E \neq \emptyset$
4. δ_D: for each subset S of Q_E and for each input symbol $a \in \Sigma$:

 - Let $R = \bigcup_{p \in s} \delta_E(p,a)$ // go to destination states
 - $\delta_D(S,a) = \bigcup_{r \in R} \text{ECLOSE}(r)$ // from there, take a union of all their ε-closures

Reading: Section 2.5.5 in book
Example: ε-NFA \rightarrow DFA

$L = \{w \mid w$ is empty, or if non-empty will end in 01$\}$
Example: ε-NFA \Rightarrow DFA

$L = \{w \mid w$ is empty, or if non-empty will end in 01$\}$

\[\begin{array}{c|c|c|c}
\delta_E & 0 & 1 & \varepsilon \\
\hline
q_0 & \emptyset & \emptyset & \{q'_0, q_0\} \\
q_0 & \{q_0, q_1\} & \{q_0\} & \{q_0\} \\
q_1 & \emptyset & \{q_2\} & \{q_1\} \\
q_2 & \emptyset & \emptyset & \{q_2\} \\
\hline
\end{array}\]

\[\begin{array}{c|c|c|c}
\delta_D & 0 & 1 & \\
\hline
\{q'_0, q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_2\} & \{q_0, q_1\} & \{q_0\} \\
\end{array}\]
Summary

- DFA
 - Definition
 - Transition diagrams & tables
- Regular language
- NFA
 - Definition
 - Transition diagrams & tables
- DFA vs. NFA
- NFA to DFA conversion using subset construction
- Equivalency of DFA & NFA
- Removal of redundant states and including dead states
- ε-transitions in NFA
- Pigeon hole principles
- Text searching applications