More RTOS/VHDL Intro

John C. Shovic

Design and Simulate

- Design environment/design flow
 - Circuit Definition → Verification (simulation)
 - Synthesis → Simulation
 - Place and Route → Verification
 Simulation (with back annotated delays)
- Implementation (FPGAs)
 - Design Review
 - Submit

Basic Concepts

- Entity/Architecture
 - Entity vs. schematic symbol
 - Port statement/syntax
 (STD_LOGIC_VECTOR/UNSIGNED)
 - In, out, inout
 - Entity name as design unit
 - Architecture vs. simulation model in schematic capture
 - Architecture syntax
 - Architecture/entity binding (configuration)
 - Concurrent area
More Basic Concepts

• Signals/Signal assignments
 • Y <= '1'; Y <= A; etc.
 • "Standard" functions
 (and, or, nand, nor, xor, xnor, not, =, <, >, /=)
 • Y <= A and B;
 • VHDL time queue

More Basic Concepts

• Concurrent vs. Sequential operation
 – Signals model wires -- concurrent
 – Possible to check explicit order of occurrences; must have sequential statements (if - then).
 – Sequential statements allow definition of memory (more later)

• Structural vs. Behavioral modeling

VHDL for Combinational Circuits

• Signal assignment statements
 – Conditional
 – Selected
 – Examples
 • Mux, decoder, ssd, truth table
 – Arithmetic/data circuits (adders, comparators, shifters, multipliers)
A Mux

Architecture mux1 of mux is

```vhdl
begin
    y <= A when (Sel = "00") else
         B when (Sel = "01") else
         C when (Sel = "10") else
         D when (Sel = "11")
end Mux2;
```

8 Bit Adder

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity adder_8 is
    port (a,b: in UNSIGNED (7 downto 0);
         cin: in STD_LOGIC;
         sum: out STD_LOGIC_VECTOR (7 downto 0));
end adder_8;

architecture behav of adder_8 is
begin
    sum <= a + b + cin;
end behav;
```

Libraries and Packages

- **Library contents**
 - Pre-analyzed entities and architectures, configurations, packages
 - IEEE "standard" libraries
 - Packages
 - std_logic, std_logic_arith
 - Visibility (library and use statements)
Sequential Stuff

- VHDL for Sequential Circuits
- DFFs
- State machines
- Digital systems

DFF Register

library ieee;
use ieee.std_logic_1164.all;

entity DFFREG is
 port (D : in STD_LOGIC_VECTOR(7 downto 0);
 clk, rst : in STD_LOGIC;
 Q : out STD_LOGIC_VECTOR(7 downto 0));
end DFFREG;

architecture dffreg_arch of DFFREG is
begin
 process(clk, rst)
 begin
 if rst='1' then Q <= "00000000";
 elsif (CLK'event and CLK='1') then Q <= D;
 end if;
end process;
end dffreg_arch;

Finite State Machine

- Look at Handout

architecture example of FSM_EX is
 signal sreg : STD_LOGIC_VECTOR(1 downto 0);
begin
 process (CLK, rst) begin
 if RST='1' then
 sreg <= "00";
 elsif (CLK'event and CLK = '1') then
 case sreg is
 when "00" =>
 if X='1' then
 sreg <= "01";
 elsif X='0' then
 sreg <= "00";
 end if;
 end case;
 end if;
 end process;
end example;
Homework Assignment

• Assignment #1 -
 Due on Tuesday,
 September 26,
 2000

• Read Chapter 4
 and 5 in VHDL