Multicast

- Why multicast?
- Separation of concerns: different roles for routers and end hosts
- Why a tree?
- Shared tree
 - Minimum cost spanning tree - Steiner tree
 - Center-based tree construction
- Source-based tree
 - Least unicast-cost path tree
 - Uses link-state info at each node
 - Reverse-path forwarding
 - At router R forward packet from source S iff packet arrived on link that R would use to forward packets to S
- Tunneling

Why multicast?

- Network perspective:
 - Share network resources when sending same info to multiple destinations
 - Multicast group addressing
- Application perspective:
 - Reliably send same information (maybe in the same order) to multiple destinations

THESE TWO ARE NOT THE SAME - and maybe have very little to do with one another

Routers and end hosts

- Routers
 - Build network-layer tree (the routing problem)
 - Optimal routing
 - pruning
 - Forward multicast traffic
 - Follow the edges of the tree
- Hosts
 - Tell nearest router of interest in a group (+ or -)
 - IGMP
 - Based on host-supplied info each router decides if it needs to participate in each group

Why are routing trees important for multicast?

- Consider what a router must do with a multicast packet:
 - Receive it on some incoming link
 - Forward it on some outgoing links
 - Which ones?
- “cost” to the network of delivering a single multicast packet
 - Sum(link cost*packets traversing link)
- “costs” to the application of communicating with multicast
 - Average, maximum delay in delivering to all recipients
Minimum cost multicast spanning tree
- Aka Steiner tree problem - NP-hard
- How is it different from the well-known spanning tree problem with an $O(e \log e)$ solution?
- Not used in practice but gives a theoretical foundation to compare other solutions against

Center-based tree
- Pick one node to be the “center”
- Grow the graph by sending join messages from the edges toward the center, recording the route
- Tree depends on the order of joining

Least unicast-cost path tree
- Packets follow the same path a unicast packet would take from source to destination
- Routers, not source, do packet replication
- Pre-build tree with join messages

Tunneling
- 32 bits
- 4: Network Layer 4b-42

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ver</td>
<td>version</td>
</tr>
<tr>
<td>head len</td>
<td>length</td>
</tr>
<tr>
<td>type of service</td>
<td></td>
</tr>
<tr>
<td>length</td>
<td></td>
</tr>
<tr>
<td>16-bit identifier</td>
<td>source IP address</td>
</tr>
<tr>
<td>flags</td>
<td>destination IP address</td>
</tr>
<tr>
<td>fragment offset</td>
<td>Options (if any)</td>
</tr>
<tr>
<td>Internet checksum</td>
<td>data</td>
</tr>
<tr>
<td>time to live</td>
<td>(variable length, typically a TCP</td>
</tr>
<tr>
<td>upper layer</td>
<td>or UDP segment OR</td>
</tr>
<tr>
<td>offset</td>
<td>Another IP packet OR</td>
</tr>
</tbody>
</table>

4: Network Layer 4b-44
Tunneling is used for

- Multicast overlay for non-multicast-aware internet (Mbone)
- Early deployment of IPv6 in the IPv4 network
- Virtual private networking
- Novell (IPX) networking over IP

Review

- Network layer services
 - VC or datagram
 - Consequences for other important characteristics
 - Which choice
- Routing as a graph problem
 - DV and LS algorithms
 - Know how to execute
- Internet Addressing
 - Host (interface) address
 - Network address
 - Netmask
 - CIDR
 - Where do addresses come from?
- Routing in the internet
 - RIP
 - OSPF
 - The need for hierarchy - why different inter- and intra- AS routing rules
- IP Datagram format
- Fragmentation/Reassembly
- Protocol maps
- 3 router architectures
 - Memory
 - Bus
 - Crossbar
- Multicast
- Did not cover IPv6
- Programming with select()