Bridge Filtering

- Bridges learn which hosts can be reached through which interfaces: maintain filtering tables
 - When a frame is received, the bridge "learns" the location of the sender: incoming LAN segment
 - Records sender location in the filtering table
- Filtering table entry:
 - (Node LAN Address, Bridge Interface, Time Stamp)
 - Stale entries in the Filtering Table dropped (TTL can be 60 minutes)

 Filtering procedure:

```
if destination is on LAN on which frame was received
then drop the frame
else { lookup dest in filtering table
      if entry found for destination
      then forward the frame on interface indicated;
      else flood; /* forward on all but the interface on which the frame arrived */
    }
```

Bridge Learning: example

Suppose C sends frame to D and D replies back with frame to C

- C sends frame, bridge has no info about D, so floods to both LANs
 - Bridge notes that C is on port 1
 - Frame ignored on upper LAN
 - Frame received by D

- D generates reply to C, sends
 - Bridge sees frame from D
 - Bridge notes that D is on interface 2
 - Bridge knows C on interface 1, so selectively forwards frame out via interface 1
Bridges Spanning Tree
- for increased reliability, desirable to have redundant, alternate paths from source to dest
- with multiple simultaneous paths, cycles result - bridges may multiply and forward frame forever
- solution: organize bridges in a spanning tree by disabling subset of interfaces

Bridges vs. Routers
- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - bridges are Link Layer devices
- routers maintain routing tables, implement routing algorithms
- bridges maintain filtering tables, implement filtering, learning and spanning tree algorithms

Routers vs. Bridges
- Bridges + and -
 + Bridge operation is simpler requiring less processing bandwidth
 - Topologies are restricted with bridges: a spanning tree must be built to avoid cycles
 - Bridges do not isolate broadcast domains
 - All hosts see all broadcasts
- Routers + and -
 + arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols)
 + isolate broadcast domains
 + reduce broadcast traffic seen by each host
 - require IP address configuration (not plug and play)
 - require higher processing bandwidth
- bridges do well in small (few hundred hosts) while routers used in large networks (thousands of hosts)