Secure sockets layer (SSL)

- PGP provides security for a specific network app.
- SSL works at transport layer. Provides security to any TCP-based app using SSL services.
- SSL: used between WWW browsers, servers for E-commerce (shttp).
- SSL security services:
 - server authentication
 - data encryption
 - client authentication (optional)

- Server authentication:
 - SSL-enabled browser includes public keys for trusted CAs.
 - Browser requests server certificate, issued by trusted CA.
 - Browser uses CA’s public key to extract server’s public key from certificate.
 - Visit your browser’s security menu to see its trusted CAs.
 - www.openssl.org for more info

SSL (continued)

Encrypted SSL session:

- Browser generates symmetric session key, encrypts it with server’s public key, sends encrypted key to server.
- Using its private key, server decrypts session key.
- Browser, server agree that future msgs will be encrypted.
- All data sent into TCP socket (by client or server) is encrypted with session key.

SSL: basis of IETF Transport Layer Security (TLS) RFC 2246.

SSL can be used for non-Web applications, e.g., IMAP.

Client authentication can be done with client certificates.

IPSEC: Network Layer Security

- Network-layer secrecy:
 - sending host encrypts the data in IP datagram
 - TCP and UDP segments; ICMP and SNMP messages.
- Network-layer authentication
 - destination host can authenticate source IP address
- Two principle protocols:
 - authentication header (AH) protocol
 - encapsulation security payload (ESP) protocol

- RFCs 2401, 2411, 2402, 2406
- For both AH and ESP, source, destination handshake:
 - create network-layer logical channel called a (service agreement-no)
 (security agreement-no) security association (SA)
- Each SA unidirectional
- Uniquely determined by:
 - security protocol (AH or ESP)
 - source IP address
 - 32-bit connection ID

Authentication Header (AH) Protocol

- Provides source host authentication, data integrity, but not secrecy.
- AH header inserted between IP header and IP data field.
- Protocol field = 51.
- Intermediate routers process datagrams as usual.

AH header includes:
- connection identifier
- authentication data: signed message digest, calculated over original IP datagram, providing source authentication, data integrity.
- Next header field: specifies type of data (TCP, UDP, ICMP, etc.)
ESP Protocol

- Provides secrecy, host authentication, data integrity.
- Data, ESP trailer encrypted.
- Next header field is in ESP trailer.
- ESP authentication field is similar to AH authentication field.
- Protocol = 50.

<table>
<thead>
<tr>
<th>IP Header</th>
<th>ESP Header</th>
<th>TCP/UDP Segment</th>
<th>ESP Trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network Security (summary)

- Basic techniques......
- Cryptography (symmetric and public)
- Authentication
- Message integrity
 - Message digest
 - Digital signatures

... used in many different security scenarios

- Secure email
- Secure transport (SSL)
- IP sec

See also: firewalls, in network management