Transport Layer

Outline
- Unreliable Datagram Protocol (UDP)
- Reliable Byte-Stream (TCP)
 - Connection Establishment/Termination
 - Sliding Window Revisited
 - Flow Control
 - Adaptive Timeout

Simple Demultiplexor (UDP)
- Unreliable and unordered datagram service
- Adds multiplexing
- No flow control
- Endpoints identified by ports
 - servers have well-known ports
 - see /etc/services on Unix
- Header format
 - Optional checksum
 - pseudo header + UDP header + data

End-to-End Protocols
- Underlying best-effort network (IP)
 - drop messages
 - re-orders messages
 - delivers duplicate copies of a given message
 - limits messages to some finite size
 - delivers messages after an arbitrarily long delay
- Common end-to-end services
 - guarantee message delivery
 - deliver messages in the same order they are sent
 - deliver at most one copy of each message
 - support arbitrarily large messages
 - support synchronization
 - allow the receiver to flow control the sender
 - support multiple application processes on each host

TCP Overview
- Connection-oriented
- Byte-stream
 - app writes bytes
 - TCP sends segments
 - app reads bytes
- Full duplex
- Flow control: keep sender from overrunning receiver
- Congestion control: keep sender from overrunning network
Data Link Versus Transport

- Potentially dynamic connection to different hosts
 - need explicit connection establishment and termination
- Potentially different and varying RTT
 - need adaptive timeout mechanism
- Potentially long delay in network
 - need to be prepared for arrival of very old packets
- Potentially different capacity at destinations
 - need to accommodate different node capacity
- Potentially different and varying network capacity
 - Discover network capacity
 - need to be prepared for network congestion

Segment Format

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrcPort</td>
<td>DstPort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SequenceNum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledgment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HdrLen</td>
<td>0</td>
<td>Flags</td>
<td>AdvertisedWindow</td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td>UrgPtr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Segment Format (cont)

- Each connection identified with 4-tuple:
 - (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)
- Sliding window + flow control
 - acknowledgment, SequenceNum, AdvertisedWindow

- Flags
 - SYN, FIN, RESET, PUSH, URG, ACK
- Checksum
 - pseudo header + TCP header + data

Connection Establishment and Termination

Active participant (client)

\[\text{SYN, SequenceNum} = x \]

\[\text{SYN + ACK, SequenceNum} = y \]

\[\text{ACK, Acknowledgment} = y + 1 \]

Passive participant (server)
State Transition Diagram

Flow Control
- Send buffer size: MaxSendBuffer
- Receive buffer size: MaxRcvBuffer
- Receiving side
 - LastByteRcvd - LastByteRead <= MaxRcvBuffer
 - AdvertisedWindow = MaxRcvBuffer - (NextByteExpected - NextByteRead)
- Sending side
 - LastByteSent - LastByteAcked <= AdvertisedWindow
 - EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)
 - LastByteWritten - LastByteAcked <= MaxSendBuffer
 - block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer
- Always send ACK in response to arriving data segment
- Persist when AdvertisedWindow = 0

Protection Against Wrap Around
- 32-bit SequenceNum

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Time Until Wrap Around</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (1.5 Mbps)</td>
<td>6.4 hours</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>57 minutes</td>
</tr>
<tr>
<td>T3 (45 Mbps)</td>
<td>13 minutes</td>
</tr>
<tr>
<td>FDDI (100 Mbps)</td>
<td>6 minutes</td>
</tr>
<tr>
<td>STS-3 (155 Mbps)</td>
<td>4 minutes</td>
</tr>
<tr>
<td>STS-12 (622 Mbps)</td>
<td>55 seconds</td>
</tr>
<tr>
<td>STS-24 (1.2 Gbps)</td>
<td>28 seconds</td>
</tr>
</tbody>
</table>
Keeping the Pipe Full

• 16-bit **AdvertisedWindow**

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Delay x Bandwidth Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (1.5 Mbps)</td>
<td>18KB</td>
</tr>
<tr>
<td>Ethernet (10 Mbps)</td>
<td>122KB</td>
</tr>
<tr>
<td>T3 (45 Mbps)</td>
<td>549KB</td>
</tr>
<tr>
<td>FDDI (100 Mbps)</td>
<td>1.2MB</td>
</tr>
<tr>
<td>STS-3 (155 Mbps)</td>
<td>1.8MB</td>
</tr>
<tr>
<td>STS-12 (622 Mbps)</td>
<td>7.4MB</td>
</tr>
<tr>
<td>STS-24 (1.2 Gbps)</td>
<td>14.8MB</td>
</tr>
</tbody>
</table>