Quality of Service

Outline
Realtime Applications
Integrated Services
Differentiated Services
Realtime Applications

• Require “deliver on time” assurances
 – must come from inside the network

• Example application (audio)
 – sample voice once every 125us
 – each sample has a playback time
 – packets experience variable delay in network
 – add constant factor to playback time: playback point
Playback Buffer

- Sequence number
- Packet generation
- Network delay
- Buffer
- Playback
- Packet arrival

Time

Fall 2001
CS 555
Example Distribution of Delays
Taxonomy

- Applications
 - Real time
 - Tolerant
 - Adaptive
 - Delay-adaptive
 - Nonadaptive
 - Rate-adaptive
 - Intolerant
 - Rate-adaptive
 - Nonadaptive
 - Elastic
 - Interactive
 - Interactive bulk
 - Asynchronous
Integrated Services

• Service Classes
 – guaranteed
 – controlled-load

• Mechanisms
 – signalling protocol
 – admission control
 – policing
 – packet scheduling
Flowspec

• **Rspec**: describes service requested from network
 – controlled-load: none
 – guaranteed: delay target

• **Tspec**: describes flow’s traffic characteristics
 – average bandwidth + burstiness: *token bucket* filter
 – token rate \(r \)
 – bucket depth \(B \)
 – must have a token to send a byte
 – must have \(n \) tokens to send \(n \) bytes
 – start with no tokens
 – accumulate tokens at rate of \(r \) per second
 – can accumulate no more than \(B \) tokens
Per-Router Mechanisms

• Admission Control
 – decide if a new flow can be supported
 – answer depends on service class
 – not the same as policing or shaping

• Packet Processing
 – classification: associate each packet with the appropriate reservation
 – scheduling: manage queues so each packet receives the requested service
Reservation Protocol

- Called signaling in ATM
- Proposed Internet standard: RSVP
- Consistent with robustness of today’s connectionless model
- Uses soft state (refresh periodically)
- Designed to support multicast
- Receiver-oriented
- Two messages: PATH and RESV
- Source transmits PATH messages every 30 seconds
- Destination responds with RESV message
- Merge requirements in case of multicast
- Can specify number of speakers
RSVP Example
RSVP versus ATM (Q.2931)

- **RSVP**
 - receiver generates reservation
 - soft state (refresh/timeout)
 - separate from route establishment
 - QoS can change dynamically
 - receiver heterogeneity

- **ATM**
 - sender generates connection request
 - hard state (explicit delete)
 - concurrent with route establishment
 - QoS is static for life of connection
 - uniform QoS to all receivers
Differentiated Services

• Problem with Integrated Services
 – Scalability – amount of state in core routers
 – Classification cost in core routers
 – Limited service models (can’t say class A gets better service than class B, e.g.)

• Differentiated Services (DiffServ)
 – RFC 2474/2475
 – Goal is scalability
 – Flexible differentiation based on a set of components

• Key to the approach
 – *packet* classification and labelling at network *edge*
 – Forwarding “priority” according to label in the network core
 – per hop behavior
 • Core routers don’t have per-flow state
Example mechanism: RIO

- RED with In and Out
- Mechanism
 - packets: ‘in’ and ‘out’ bit
 - edge routers: tag packets
 - core routers: RIO
 (RED with In and Out)
Per-Hop Behaviors

• a description of the externally observable forwarding behavior of a DiffServ node applied to a particular DiffServ behavior aggregate (class)
 – Doesn’t define the implementation

• Example descriptions (generic)
 – Class A gets at least $x\%$ of link bandwidth
 – Class A receives priority over Class B
Expedited Forwarding PHB

• RFC 2598
• An EF class receives a guaranteed minimum bandwidth
 – Requires isolation from other traffic
 – Abstractly: we’ve created a virtual link with the required minimum bandwidth for the EF class
• Example mechanism for achieving: WFQ
Assured Forwarding PHB

- RFC 2597
- Traffic is divided into 4 classes each with 3 “drop-preference” categories.
- Each class receives a guaranteed minimum amount of bandwidth and buffering
- If you were an ISP how could make a product out of this kind of mechanism?
Core Stateless Fair Queuing

- DiffServ-like marking at the network edge
 - Packets in a flow are marked with their observed arrival rate (possibly weighted)
- Core routers
 - Preferentially drop packets with high arrival rates
 - Relabel packets according to their actual departure rate
- Relies on adaptation to packet loss by the sender to achieve fair allocations
 - But those who don’t play by the rules can be punished
Not playing by the rules – unfriendly flows

• Fire hose application
 – Gets $x\%$ of the available value from $x\%$ of the packets it sends
 – No motivation to reduce sending rate to match fair share
 – Network should punish this behavior by reducing packet delivery to below fair share

• Greedy AIMD
 – A bigger problem with FIFO/Tail Drop than with anything that approximates FQ
Quick Essay

• Consider the grading guide for project 2.
• Overall, was having the guide helpful, compared with your experience in project 1 and other projects you have done?
• What in the grading guide was most helpful to you in preparing project 2?
• What in the grading guide was least helpful to you in preparing project 2?
• What would you most like to see changed in the grading guide for project 3?