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Overview
 Hash Table Data Structure : Purpose

 To support insertion, deletion and search in 
t t tiaverage-case constant time

 Assumption: Order of elements irrelevant
 ==> data structure *not* useful for if you want to 

i t i d t i ki d f d f thmaintain and retrieve some kind of an order of the 
elements

 Hash function
 Hash[ “string key”] ==> integer value

 Hash table ADT
I l t ti A l i A li ti

22222

 Implementations, Analysis, Applications
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Hash table: Main components

key value

Hash index

e

“john”

key

h(“john”)
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key
Hash 
function

Hash table
(implemented as a vector)How to determine … ? 3
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Hash Table
 Hash table is an array of fixed 

size TableSize key Element value

 Array elements indexed by a 
key, which is mapped to an 
array index (0…TableSize-1)

 Mapping (hash function) h Mapping (hash function) h 
from key to index
 E.g., h(“john”) = 3
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Hash Table Operations
Hash 
f ti

 Insert
 T [h(“john”)] = <“john”,25000>

Hash key function

 Delete
 T [h(“john”)] = NULL

Data 
record

 T [h( john )] = NULL

 Search
 T [h(“john”)] returns the 

element hashed for “john”

What happens if h(“john”) == h(“joe”) ?
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What happens if h( john ) == h( joe ) ?
“collision”



Factors affecting Hash Table 
Design

 Hash function

 Table size
 Usually fixed at the starty

 Collision handling schemeCollision handling scheme
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Hash Function

 A hash function is one which maps an 
element’s key into a valid hash table index
 h(key) => hash table index

Note that this is (slightly) different from saying: 
h(string) => int

Because the key can be of any type Because the key can be of any type
 E.g., “h(int) => int”  is also a hash function!

 But also note that any type can be converted into y yp
an equivalent string form
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h(key) ==> hash table index

Hash Function Properties
 A hash function maps key to integer

 Constraint: Integer should be between 
[0, TableSize-1]

 A hash function can result in a many-to-one mapping 
(causing collision)(causing collision)
 Collision occurs when hash function maps two or more keys 

to same array index

C lli i t b id d b t it h b Collisions cannot be avoided but its chances can be 
reduced using a “good” hash function
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h(key) ==> hash table index

Hash Function Properties

 A “good” hash function should have the 
properties:properties:
1. Reduced chance of collision

Different keys should ideally map to differentDifferent keys should ideally map to different 
indices
Distribute keys uniformly over table 

2. Should be fast to compute
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Hash Function - Effective use 
of table size
 Simple hash function (assume integer keys)

 h(Key) = Key mod TableSize

 For random keys, h() distributes keys evenly 
over tableover table
 What if TableSize = 100 and keys are ALL 

multiples of 10?
 Better if TableSize is a prime number
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Different Ways to Design a 
Hash Function for String Keys
A very simple function to map strings to integers:
 Add up character ASCII values (0-255) to produce 

integer keysinteger keys
 E.g., “abcd” = 97+98+99+100 = 394
 ==> h(“abcd”) = 394 % TableSize 

Potential problems:Potential problems:
 Anagrams will map to the same index

 h(“abcd”) == h(“dbac”)

 Small strings may not use all of table
 Strlen(S) * 255 < TableSize

 Time proportional to length of the stringTime proportional to length of the string
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Different Ways to Design a 
Hash Function for String Keys
 Approach 2

 Treat first 3 characters of string as base-27 integer (26 
letters plus space)letters plus space)
 Key = S[0] + (27 * S[1]) + (272 * S[2])

 Better than approach 1 because … ?

Potential problems:
 Assumes first 3 characters randomly distributed

 Not true of English
Apple
Apply
Appointment

collision

12

pp
Apricot
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Different Ways to Design a 
Hash Function for String Keys
 Approach 3

Use all N characters of string as an 
N-digit base-K numberg

 Choose K to be prime number 
larger than number of different 
digits (characters)

 I.e., K = 29, 31, 37

 If L = length of string S, then
L 1 

 Use Horner’s rule to compute h(S)
Li it L f l t i

TableSizeiLSSh
L

i

i mod37]1[)(
1

0








 



 Problems:
potential overflow 

 Limit L for long strings
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larger runtime
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“Collision resolution techniques”

T h i t D l ith

q

Techniques to Deal with 
CollisionsCollisions

Chaining
Open addressingOpen addressing
Double hashing
EtcEtc.
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Resolving Collisions

 What happens when h(k1) = h(k2)?
 ==> collision ! > collision !

 Collision resolution strategies
Chaining Chaining
 Store colliding keys in a linked list at the same 

hash table indexhash table index

 Open addressing
 Store colliding keys elsewhere in the tableg y
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Ch i iChaining

Collision resolution technique #1
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Chaining strategy: maintains a linked list atChaining strategy: maintains a linked list at 
every hash index for collided elements

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 }

 Hash table T is a vector of 
linked lists

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 } 

 Insert element at the head 
(as shown here) or at the tail

 Key k is stored in list at Key k is stored in list at 
T[h(k)]

 E.g., TableSize = 10g
 h(k) = k mod 10
 Insert first 10 perfect 

squaressquares
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Implementation of Chaining 
Hash Table

Vector of linked lists
(this is the main 
hashtable)

Current #elements in 
the hashtable

Hash functions for 
i t d t i

the hashtable

18

integers and string 
keys
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Implementation of Chaining 
Hash Table

This is the hashtable’s 
current capacitycurrent capacity 
(aka. “table size”)

This is the hash table 
index for the element 
x
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Duplicate check

Later, but essentially 
resizes the hashtable if its 
getting crowded
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Each of theseEach of these 
operations takes time 
linear in the length of 
the list at the hashed 

21

index location
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All hash objects must 
define == and != 
operators.

Hash function to 
handle Employee 

22

object type
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Collision Resolution by 
Chaining: Analysis
 Load factor λ of a hash table T is defined as follows:

 N = number of elements in T (“current size”)
M i f T (“t bl i ”) M = size of T (“table size”)

 λ = N/M (“ load factor”)
 i.e., λ is the average length of a chain

 Unsuccessful search time: O(λ)
 Same for insert time Same for insert time

 Successful search time:  O(λ/2)
 Ideally, want λ ≤ 1 (not a function of N)
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Potential disadvantages of 
Chaining
Linked lists could get long

 Especially when N approaches M 
L li k d li t ld ti l i t Longer linked lists could negatively impact 
performance

More memory because of pointers

Absolute worst-case (even if N << M):
 All N elements in one linked list!
 Typically the result of a bad hash function
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O Add iOpen Addressing

Collision resolution technique #2
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Collision Resolution by
An “inplace” approach

Open Addressing
When a collision occurs, look elsewhere in the 

table for an empty slot
 Advantages over chaining

 No need for list structures
 No need to allocate/deallocate memory during o eed o a oca e/dea oca e e o y du g

insertion/deletion (slow)

 Disadvantages
Slower insertion May need several attempts to find an Slower insertion – May need several attempts to find an 
empty slot

 Table needs to be bigger (than chaining-based table) to 
achieve average case constant time performanceachieve average-case constant-time performance
 Load factor λ ≈ 0.5
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Collision Resolution by
Open Addressing
 A “Probe sequence” is a sequence of slots in hash table while 

searching for an element x
 h0(x) h1(x) h2(x) h0(x), h1(x), h2(x), …
 Needs to visit each slot exactly once
 Needs to be repeatable (so we can find/delete what we’ve 

inserted)inserted)

 Hash function
 hi(x) = (h(x) + f(i)) mod TableSize
 f(0) = 0 ==> position for the 0th probe
 f(i) is “the distance to be traveled relative to the 0th probe ( ) p

position, during the ith probe”.
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Linear Probing
ith probe 
index =

0th probe 
index + i

 f(i) = is a linear function of i, 
index  + i

Linear probing:

0th b
E.g., f(i) = i

h (x) = (h(x) + i) mod TableSize

i
0th probe

1st probe

2nd probe

occupied

occupied
hi(x) = (h(x) + i) mod TableSize2 probe

3rd probe

…

occupied

Probe sequence: +0, +1, +2, +3, +4, … 
unoccupied Populate x here
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Continue until an empty slot is found
#failed probes is a measure of performance



ith probe 
index = 

0th probe 
index + i

Linear Probing
 f(i) = is a linear function of i, e.g., f(i) = i

 hi(x) = (h(x) + i) mod TableSize

 Probe sequence: +0, +1, +2, +3, +4, … 
 Example: h(x) = x mod TableSize Example: h(x) = x mod TableSize

 h0(89) = (h(89)+f(0)) mod 10 = 9
 h0(18) = (h(18)+f(0)) mod 10 = 8
 h0(49) = (h(49)+f(0)) mod 10 = 9 (X)
 h1(49) = (h(49)+f(1)) mod 10

= (h(49)+ 1 ) mod 10 = 0= (h(49)+  1 ) mod 10 = 0
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Linear Probing Example
I t 89 18 49 58 69 timeInsert sequence: 89, 18, 49, 58, 69

30

#unsuccessful 
probes:

0 0 1 3 3 7
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Linear Probing: Issues

Probe sequences can get longer with time
Primary clusteringPrimary clustering

 Keys tend to cluster in one part of table
Keys that hash into cluster will be added to Keys that hash into cluster will be added to 
the end of the cluster (making it even 
bigger)bigger)

 Side effect: Other keys could also get 
affected if mapping to a crowdedaffected if mapping to a crowded 
neighborhood
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Linear Probing: Analysis
 Expected number of 

probes for insertion or 
unsuccessful search

 Example (λ = 0.5)
 Insert / unsuccessful 

searchunsuccessful search search
 2.5 probes

 Successful search
1 5 b











 2)1(
11

2
1



 Expected number of 
probes for successful 

 1.5 probes

 Example (λ = 0.9)
 Insert / unsuccessful 

 )1(2 

search
/

search
 50.5 probes

 Successful search









)1(
11

2
1

 Successful search
 5.5 probes

32





  )1(2 
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Random Probing: Analysis

 Random probing does not suffer from 
clustering

 Expected number of probes for insertion or 
unsuccessful search: 1l1

 Example
 1

ln

 λ = 0.5: 1.4 probes
 λ = 0.9: 2.6 probes
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Linear vs. Random Probing
es

Linear probing
Random probing

# 
pr

ob
e

good bad

34

Load factor λU - unsuccessful search
S - successful search
I - insert
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Quadratic Probing

 Avoids primary clustering
 f(i) is quadratic in i

Quadratic probing:
0th probe

1st probe  f(i) is quadratic in i 
e.g., f(i) = i2

h (x) = (h(x) + i2) mod

i 1st probe

2nd probe

occupied

occupied

hi(x) = (h(x) + i ) mod 
TableSize

 Probe sequence:3rd probe

occupied

q
+0, +1, +4, +9, +16, … 

…
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Continue until an empty slot is found
#failed probes is a measure of performance

occupied



Quadratic Probing

 Avoids primary clustering
 f(i) is quadratic in I e g f(i) = i2 f(i) is quadratic in I, e.g., f(i) = i

 hi(x) = (h(x) + i2) mod TableSize
 Probe sequence: +0 +1 +4 +9 +16 Probe sequence: +0, +1, +4, +9, +16, … 

 Example:
h (58) (h(58) f(0)) d 10 8 (X) h0(58) = (h(58)+f(0)) mod 10 = 8 (X)

 h1(58) = (h(58)+f(1)) mod 10 = 9 (X)
h ( 8) (h( 8) f(2)) d 0 2 h2(58) = (h(58)+f(2)) mod 10 = 2
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Q) Delete(49), Find(69)  - is there a problem?

Quadratic Probing Example
I t 89 18 49 58 69

+12

+12

Insert sequence: 89, 18, 49, 58, 69

+22

+22

+12

2+02

+12 +02+02
+02

+02

37

#unsuccessful 
probes:

0 0 1 2 2 5
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Quadratic Probing: Analysis

 Difficult to analyze
 Theorem 5.1

 New element can always be inserted into a table 
that is at least half empty and TableSize is prime

 Otherwise, may never find an empty slot, 
even is one exists

 Ensure table never gets half full
 If close, then expand it
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Quadratic Probing

 May cause “secondary clustering”

 Deletion
 Emptying slots can break probe sequence and p y g p q

could cause find stop prematurely
 Lazy deletion

Diff ti t b t t d d l t d l t Differentiate between empty and deleted slot
 When finding skip and continue beyond deleted slots

 If you hit a non-deleted empty slot, then stop find procedure 
returning “not found”returning “not found”

 May need compaction at some time
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Quadratic Probing: 
Implementation
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Quadratic Probing: 
Implementation

Lazy deletion
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Quadratic Probing: 
Implementation

Ensure table 
size is prime
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Quadratic Probing: 
Implementation

Find

Skip DELETED;
No duplicatesNo duplicates

Quadratic probe 
sequence (really)
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Quadratic Probing: 
Implementation

Insert

No duplicatesNo duplicates

Remove

44

No deallocation 
needed
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Double Hashing: keep two 
hash functions h1 and h2

 Use a second hash function for all tries I 
other than 0: f(i) = i * h2(x)

 Good choices for h2(x) ?
 Should never evaluate to 0
 h2(x) = R – (x mod R)

 R is prime number less than TableSize

P i l ith R 7 Previous example with R=7
 h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

h (49) = (h(49)+1*(7 49 mod 7)) mod 10 = 6

45

 h1(49) = (h(49)+1*(7 – 49 mod 7)) mod 10 = 6
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Double Hashing Example
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Double Hashing: Analysis

 Imperative that TableSize is prime
 E g insert 23 into previous table E.g., insert 23 into previous table

 Empirical tests show double hashing 
close to random hashingclose to random hashing

 Extra hash function takes extra time to 
tcompute
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Probing Techniques - review

Linear probing:

0th t

Quadratic probing: Double hashing*:

i
0th try

i
0th try

1st try

2nd t

1st try

2nd try

i
0th try

2nd try2 try

3rd try

…

3rd try t

2nd try

3rd try

…

1st try

…

3rd try

…

*(determined by a second
hash function) 48Cpt S 223. School of EECS, WSU



Rehashing
 Increases the size of the hash table when load factor 

becomes “too high” (defined by a cutoff)
 Anticipating that prob(collisions) would become 

higher
 Typically expand the table to twice its size (but still Typically expand the table to twice its size (but still 

prime)
 Need to reinsert all existing elements into new hash 

table
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Rehashing Example

h(x) = x mod 7
λ 0 57

h(x) = x mod 17
λ 0 29λ = 0.57 λ = 0.29

Rehashing
Insert 23

λ = 0.71
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Rehashing Analysis

 Rehashing takes time to do N insertions
 Therefore should do it infrequently Therefore should do it infrequently
 Specifically

M t h b N/2 i ti i l t Must have been N/2 insertions since last 
rehash
A ti i th O(N) t th N/2 i Amortizing the O(N) cost over the N/2 prior 
insertions yields only constant additional 
time per insertiontime per insertion
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Rehashing Implementation

 When to rehash
 When load factor reaches some threshold When load factor reaches some threshold 

(e.g,. λ ≥0.5), OR
 When an insertion failsWhen an insertion fails

 Applies across collision handling 
schemesschemes
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Rehashing for Chaining
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Rehashing for
Quadratic Probing
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Hash Tables in C++ STL

 Hash tables not part of the C++ 
Standard LibraryStandard Library

 Some implementations of STL have 
hash tables (e g SGI’s STL)hash tables (e.g., SGI s STL)
 hash_set
 hash map hash_map
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Hash Set in STL
#include <hash set>#include <hash_set>

struct eqstr
{

bool operator()(const char* s1, const char* s2) const
{{

return strcmp(s1, s2) == 0;
}

};

void lookup(const hash_set<const char*, hash<const char*>, eqstr>& Set,
const char* word)

{
hash_set<const char*, hash<const char*>, eqstr>::const_iterator it

= Set.find(word);
cout << word << ": "

<< (it != Set end() ? "present" : "not present")<< (it != Set.end() ? "present" : "not present")
<< endl;

}

int main()
{

Key Hash fn Key equality test

56

{
hash_set<const char*, hash<const char*>, eqstr> Set;
Set.insert("kiwi");
lookup(Set, “kiwi");
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Hash Map in STL
#i l d <h h >#include <hash_map>

struct eqstr
{

bool operator() (const char* s1, const char* s2) const
{
return strcmp(s1, s2) == 0;

}
};

int main()
{

hash_map<const char*, int, hash<const char*>, eqstr> months;
months["january"] = 31;

Key Data Hash fn Key equality test

Internally
treated months["february"] = 28;

…
months["december"] = 31;
cout << “january -> " << months[“january"] << endl;

}

treated 
like insert
(or overwrite
if key 
already present)

57

}
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Problem with Large Tables

 What if hash table is too large to store 
in main memory?in main memory?

 Solution: Store hash table on disk
Minimize disk accesses Minimize disk accesses

 But…
ll d k Collisions require disk accesses

 Rehashing requires a lot of disk accesses

58

Solution: Extendible Hashing
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Hash Table Applications
 Symbol table in compilers
 Accessing tree or graph nodes by name

 E.g., city names in Google mapsg , c ty a es Goog e aps
 Maintaining a transposition table in games

 Remember previous game situations and the move taken 
(avoid re-computation)(avoid re computation)

 Dictionary lookups
 Spelling checkers

N t l l d t di ( d ) Natural language understanding (word sense)
 Heavily used in text processing languages

 E.g., Perl, Python, etc.
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Summary

 Hash tables support fast insert and 
searchsearch
 O(1) average case performance
 Deletion possible but degrades Deletion possible, but degrades 

performance

 Not suited if ordering of elements is Not suited if ordering of elements is 
important
Many applications Many applications
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Points to remember - Hash 
tables
 Table size prime
 Table size much larger than number of inputs 

(to maintain λ closer to 0 or < 0.5)
 Tradeoffs between chaining vs. probing

C lli i h d i hi d Collision chances decrease in this order: 
linear probing => quadratic probing => 
{random probing, double hashing}{random probing, double hashing}

 Rehashing required to resize hash table at a 
time when λ exceeds 0.5

 Good for searching. Not good if there is some 
order implied by data. 61Cpt S 223. School of EECS, WSU


