!'_ Hashing & Hash Tables

Cpt S 223. School of EECS, WSU



Overview

= Hash Table Data Structure : Purpose

n 70O support insertion, deletion and search in
average-case constant time
= Assumption: Order of elements irrelevant

« ==> data structure *not* useful for if you want to
maintain and retrieve some kind of an order of the
elements

= Hash function

F Hash[ "string key”] ==> integer value
= Hash table ADT

=« Implementations, Analysis, Applications

Cpt S 223. School of EECS, WSU



‘L Hash table: Main components

X I
I [ key ] [ value
| 2\
Hashindex 5 john 25000
4 phil 31250
N
5 —
“john” %
6 dave 27500 o)
1C
key 7 mary 28200
Hash 3 f
function
9
. Hash table
HOW tO determlne ? (implemented as a vector) 3

Cpot S 223. School of EECS, WSU



i Hash Table

= Hash table is an array of fixed
size TableSize

key ] Element valué

|
y £

john 25000

= Array elements indexed by a

key, which is mapped to an phil 31250
array index (0...TableSize-1)

dave 27500

= Mapping (hash function) h mary 28200

from key to index
« E.g., h(john"”) =3

o 0 N Y i B W N = O

Cpt S 223. School of EECS, WSU 4



Hash Table Operations

m Insert/ 0
. [h(“jOhn")] = <“j0hn”,25000> 1
2
s Delete - 3 john 25000
= T [h("“john"”)] = NULL 4 phil 31250
5
6 dave 27500
s Search | 7 —
« T [h("john™] returns the
element hashed for “john” 8
9

What happens if h(“john”) == h(“joe”) ?

“collision”

Cpt S 223. School of EECS, WSU




Factors affecting Hash Table

i Design

= Hash function

= Table size
« Usually fixed at the start

= Collision handling scheme

Cpt S 223. School of EECS, WSU



i Hash Function

= A hash function is one which maps an
element’s key into a valid hash table index
= h(key) => hash table index

Note that this is (slightly) different from saying:
h(string) => int

= Because the key can be of any type
= E.g., "h(int) => int” is also a hash function!

= But also note that any type can be converted into
an equivalent string form

Cpt S 223. School of EECS, WSU



h(key) ==> hash table index

‘L Hash Function Properties

= A hash function maps key to integer
» Constraint: Integer should be between
[0, TableSize-1]
= A hash function can result in a many-to-one mapping
(causing collision)

= Collision occurs when hash function maps two or more keys
to same array index

s Collisions cannot be avoided but its chances can be
reduced using a “good” hash function

Cpt S 223. School of EECS, WSU 8



h(key) ==> hash table index

‘L Hash Function Properties

= A "good” hash function should have the
properties:

1. Reduced chance of collision

Different keys should ideally map to different
indices

Distribute keys uniformly over table

>. Should be fast to compute

Cpt S 223. School of EECS, WSU 9



Hash Function - Effective use
i of table size

= Simple hash function (assume integer keys)
= h(Key) = Key mod TableSize

= For random keys, h() distributes keys evenly
over table

= What if TableSize = 100 and keys are ALL
multiples of 107?

= Better if TableSize is a prime number

Cpt S 223. School of EECS, WSU

10



Different Ways to Design a
Hash Function for String Keys

A very simple function to map strings to integers:

= Add up character ASCII values (0-255) to produce
integer keys
= E.g., "abcd” = 97+98+99+100 = 394
= ==> h("abcd”) = 394 % TableSize

Potential problems:

= Anagrams will map to the same index
- h(*abcd”) == h("dbac”)

= Small strings may not use all of table
= Strlen(S) * 255 < TableSize

= Time proportional to length of the string

Cpt S 223. School of EECS, WSU

11



Different Ways to Design a
i Hash Function for String Keys

= Approach 2

= Treat first 3 characters of string as base-27 integer (26
letters plus space)
= Key = S[0] + (27 * S[1]) + (272 * S[2])

= Better than approach 1 because ... ?

Potential problems:

=« Assumes first 3 characters randomly distributed

= Nott f Engli
0 pr&%o glis

Apply h} m===)> collision
Appointment
Apricot

Cpt S 223. School of EECS, WSU

12



Different Ways to Design a

* Hash Function for String Keys

Approach 3

Use all N characters of string as an
N-digit base-K number

= Choose K to be prime number
larger than number of different
digits (characters)
- lLe, K=29, 31,37

« If L = length of string S, then

h(S) = {ZS[L—l—l]*:W}modTableSue
¥
= Use Horner’s rule to compute h(S)

= Limit L for long strings

o ~ O n - W N =

|~y
w N ~ o o

14
15

16

/**

.i

{

* A hash routine for string objects.
*/
nt hash( const string & key, int tableSize )

int hashVal = 0;

for( int i = 03 i < key.length( ); i++ )
hashvVal = 37 * hashVal + key[ i ];

hashVal %= tableSize;
if( hashval <0 )
hashVal += tableSize;

return hashVal;

Cpt S 223. School of EECS, WSU 13



“Collision resolution techniques”

Techniques to Deal with

!'_ Collisions

Chaining

Open addressing
Double hashing
Etc.

Cpt S 223. School of EECS, WSU

14



i Resolving Collisions

= What happens when h(k,) = h(k,)?
« ==> collision !
= Collision resolution strategies

s Chaining

= Store colliding keys in a linked list at the same
hash table index

» Open addressing
= Store colliding keys elsewhere in the table

Cpt S 223. School of EECS, WSU

15



+

Chaining

Collision resolution technique #1

Cpt S 223. School of EECS, WSU

16



every hash index for collided elements
Insertion sequence: {0149 16 25 36 49 64 81 }

i Chaining strategy: maintains a linked list at

= Hash table T is a vector of 0 0 1=
linked lists A 81 L 1=
= Insert element at the head 2 T2
(as shown here) or at the tail 3 o —
= Key Kk is stored in list at 4 4 64 |+~ 4 [4—=
T[h(k)] 5 J 25 [1—
= E.g., TableSize = 10 6 36 16 | 1=
= h(k) = k mod 10 = .
= Insert first 10 perfect 8 4—
squares 9 T29 -9 1=

Cpt S 223. School of EECS, WSU 17



Implementation of Chaining
Hash Table

1 template <typename HashedObj>
2 class HashTable
3
4 pubTlic:
5 explicit HashTable( int size = 101 );
6
7 bool contains( const HashedObj & x ) const;
8
9 void makeEmpty( );
10 void insert( const HashedObj & x );
11 void remove( const HashedObj & x );
12
13 private:
14 vector<list<HashedObj> > theLists; // The array of Lists
15 int currentSize;
16
17 void rehash( );
18 int myhash( const HashedObj & x ) const;
19 }s
20
21 int hash( const string & key ); }
22 int hash( int key );

Cpt S 223. School of EECS, WSU 18



Implementation of Chaining

* Hash Table

int myhash( const HashedObj & x ) cons

{
int hashval = hash( x );

hashVal %= thelLists.size( );
if( hashval < 0 )
hashVal += thelLists.size( );

return hashVal;

S O 0~ Oy W =

e

Cpt S 223. School of EECS, WSU 19



Nale R e R s

S S
b b = O

bool insert( const HashedObj & x )

{

list<HashedObj> & whichList = theLists[ myhash( x ) ];

if( find( whichList.begin( ), whichList.end( ), x ) != whichList.end( ) )
return false;

whichList.push _back( x );

// Rehash; see Section 5.5
if( ++currentSize > thelLists.size( ) )
rehash( );

return true;

Cpt S 223. School of EECS, WSU 20



NoTie o BN e s R T R

[ RS L T L T L T T e Sy S S AT S ST SUNFS SU S S
W N O O~y W= O

void makeEmpty( )

{

}

for( int i = 0; i < theLists.size( ); i++ )
theLists[ i J.clear( );

bool contains( const HashedObj & x ) const

{

const list<HashedObj> & whichList = theLists[ myhash( x ) ];
return find( whichList.begin( ), whichList.end( ), x ) != whichList.end( );

bool remove( const HashedObj & x )

{

list<HashedObj> & whichList = theLists[ myhash( x ) ];

list<HashedObj>::iterator itr = find( whichList.begin( ), whichList.end( ), x );

return false;

whichList.erase( itr );
--currentSize;
return true;

Cpt S 223. School of EECS, WSU

21



W~ B b =

bo B B P B B B = e b e b kel b bt e b
[ TR N R VTR (S T = B oI o s BN i o TR, B SO US  (S T e BN e

// Example of an Employee class
class Employee

{
public:
const string & getName( ) const
{ return name; }
bool operator==( const Employee & rhs ) const
{ return getName( ) == rhs.getName( ); }
bool operator!=( const Employee & rhs ) const
{ return !( *this == rhs; }
// Additional public members not shown
private:

string name;
double salary;
int seniority;

// Additional private members not shown

}s

int hash( const Employee & item )

{

return hash( item.getName( ) );
} Cpt S 223. School of EECS, WSU

22



Collision Resolution by
i Chaining: Analysis

= Load factor A of a hash table T is defined as follows:

= N = number of elements in T (“current size”)
= M=sizeof T (“table size")
= A=N/M (" load factor”)

= i.e., A is the average length of a chain

= Unsuccessful search time: O(A)

= Same for insert time

= Successful search time: O(A/2)
= Ideally, want A £ 1 (not a function of N)

Cpt S 223. School of EECS, WSU

23



Potential disadvantages of

i Chaining

Linked lists could get long
= Especially when N approaches M

= Longer linked lists could negatively impact
performance

More memory because of pointers

Absolute worst-case (even if N << M):
= All N elements in one linked list!
= Typically the result of a bad hash function

Cpt S 223. School of EECS, WSU

24



¥

Open Addressing

Collision resolution technique #2

Cpt S 223. School of EECS, WSU

25



An “inplace” approach

Collision Resolution by
Open Addressing

When a collision occurs, look elsewhere in the
table for an empty slot

= Advantages over chaining
= No need for list structures
= No need to allocate/deallocate memory during
insertion/deletion (slow)
= Disadvantages

= Slower insertion — May need several attempts to find an
empty slot

= Table needs to be bigger (than chaining-based table) to
achieve average-case constant-time performance

=« Load factor A = 0.5
Cpt S 223. School of EECS, WSU 26



Collision Resolution by
Open Addressing

= A “Probe sequence” is a sequence of slots in hash table while
searching for an element x

= hy(x), hy(x), hy(x), ...
= Needs to visit each slot exactly once

= Needs to be repeatable (so we can find/delete what we've
inserted)

= Hash function
« hi(x) = (h(x) + (1)) mod TableSize
= f(0)=0 ==> position for the 0t" probe
« f(i) is “the distance to be traveled relative to the 0 probe
position, during the ' probe”.

Cpt S 223. School of EECS, WSU

27



Linear probing:

occupied

L

/ Oth probe Eg

occupied

15t probe

occupied

2rprobe  p.x) = (h(x) + i) mod TableSize

3 probe

Probe sequence: +0, +1, +2, +3, +4, ...

unoccupied

<— Populate x here

Continue until an empty slot is found

#failed probes is a measure of performance
Cpt S 223. School of EECS, WSU 28



| it probe 0th probe
index = index

i Linear Probing

= f(i) =L is a linear function of i, e.q., f(1) =/
s h;(x) = (h(x) + 1) mod TableSize

/ +

= Probe sequence: +0, +1, +2, +3, +4, ...

= Example: h(x) = x mod TableSize
= hy(89) = (h(89)+f(0)) mod 10 =9
N0(18) = (h(18)+f(0)) mod 10 = 8
N0(49) = (h(49)+f(0)) mod 10 = 9 (X)
n,(49) = (h(49)+f(1)) mod 10
=(h(49)+ 1) mod10=0

Cpt S 223. School of EECS, WSU



Linear Probing Example

Insert sequence: 89, 18, 49, 58, 69 time

»
»

Empty Table  After 89  After 18  After 49  After 58  After 69

P I S

0

1 58 4 58 ?

2 69

3

4

5

6

: / /

8 18 18 18 18

9 89 < 89 89 < 89‘/ 89 ‘/
#unsuccessful 0 0 1 3 3 7
probes:

Cpt S 223. School of EECS, WSU total 30



i Linear Probing: Issues

Probe sequences can get longer with time

Primary clustering
= Keys tend to cluster in one part of table

= Keys that hash into cluster will be added to
the end of the cluster (making it even
bigger)

= Side effect: Other keys could also get

affected if mapping to a crowded
neighborhood

Cpt S 223. School of EECS, WSU 31




Linear Probing: Analysis

= Expected number of = Example (A = 0.5)
probes for insertion or = Insert / unsuccessful
unsuccessful search search

1 [1 1 j = 2.5 probes
—| Lt > = Successful search
2 (1-4) = 1.5 probes

= Expected number of = Example (A = 0.9)
probes for successful « Insert / unsuccessful
search search

1 1 = 50.5 probes
E(lJFM] = Successful search
= 5.5 probes

Cpt S 223. School of EECS, WSU

32



i Random Probing: Analysis

= Random probing does not suffer from
clustering

= Expected number of probes for insertion or
unsuccessful search: 1 | 1
_ n—
A 1-A

= Example
= A =0.5: 1.4 probes
= A =0.9: 2.6 probes

Cpt S 223. School of EECS, WSU

33



* Linear vs. Random Probing

15.0

12.0

# probes

9.0

6.0

3.0

0.0

10 .15 20 .25 30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

U - unsuccessful search Load factor A
S - successful search

| - insert
Inse Cpt S 223. School of EECS, WSU

34



i Quadratic Probing

Quadratic probing:

= Avoids primary clustering

L

oth b N - e .
+pone  m (i) is quadratic in |

occupied
occupied  brobe e_g_, f(/) = /2
h(x) = (h(x) + Z) mod
occupied TableSize
31 probe = Probe seqguence:
+0, +1, +4, +9, +16, ...
occupied Continue until an empty slot is found

#failed probes is a measure of performance
Cpt S 223. School of EECS, WSU 35



i Quadratic Probing

= Avoids primary clustering
= f(i) is quadraticin I, e.q., (7)) = F

« hy(x) = (h(x) + Z) mod TableSize

= Probe sequence: +0, +1, +4, +9, +16, ...

= Example:

No(58) = (
N,(58) = (

N,(58) = (

n(58)+f(0)) mod
N(58)+f(1)) moc

N(58)+f(2)) moc

Cpt S 223. School of EECS, WSU

10 = 8 (X)
10 = 9 (X)
10 = 2

36



Q) Delete(49), Find(69) - is there a problem?

Quadratic Probing Example

Insert sequence: 89, 18, 49, 58, 69

Empty Table  After 80  After 18  After 49  After 58  After 69
+12
0 49« 112 49 49%
1
2 58 7 +22 58
3 69* +22
4
5
6
7 /+02 . +0?
8 18 18 18 18
e +0)?2 +12 +0)?2
9 8o 0% go gor T07 gg + 1% g *0
#unsuccessful 0 0 1 2 2 5
probes:
Cpt S 223. School of EECS, WSU total 37



i Quadratic Probing: Analysis

= Difficult to analyze

= Theorem 5.1

= New element can always be inserted into a table
that is at least half empty and TableSize is prime

= Otherwise, may never find an empty slot,
even is one exists

= Ensure table never gets half full
« If close, then expand it

Cpt S 223. School of EECS, WSU 38



i Quadratic Probing

= May cause “secondary clustering”

s Deletion

= Emptying slots can break probe sequence and
could cause find stop prematurely

= Lazy deletion
= Differentiate between empty and deleted slot

= When finding skip and continue beyond deleted slots

If you hit a non-deleted empty slot, then stop find procedure
returning “not found”

= May need compaction at some time

Cpt S 223. School of EECS, WSU

39



Quadratic Probing:

‘L Implementation

O o~ O B b

— b b
b = O

template <typename HashedObj>
class HashTable

{
public:
explicit HashTable( int size = 101 );

bool contains( const HashedObj & x ) const;
void makeEmpty( );

bool insert( const HashedObj & x );
bool remove( const HashedObj & x );

Cpt S 223. School of EECS, WSU

40



Quadratic Probing:

‘L Implementation

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

}s

enum EntryType { ACTIVE, EMPTY, DELETED };

private:
struct HashEntry
{
HashedObj element;
EntryType info;

HashEntry( const HashedObj & e = HashedObj( ), EntryType i
: element( e ), info( i) { }
}s

vector<HashEntry> array;
int currentSize;

bool isActive( int currentPos ) const;
int findPos( const HashedObj & x ) const;
void rehash( );

int myhash( const HashedObj & x ) const;

Cpt S 223. School of EECS, WSU

EMPTY )

41



Quadratic Probing:
‘L Implementation

explicit HashTable( int size = 101 ) : array( nextPrime( size ) )
{ makeEmpty( ); }

void makeEmpty( )
{

currentSize = 0
for( int i = 0; i < array.size( ); i++ )
array[ i ].info = EMPTY;

O 0o ~ O i b o N =

Cpt S 223. School of EECS, WSU

42



Quadratic Probing:
Implementation

1 bool contains( const HashedObj & x ) const
2 { return isActive( findPos( x ) ); 1}
3
4 int findPos( const HashedObj & x ) const
5 {
6 int offset = 1;
7 int currentPos = myhash( x );
8
9 while( array[ currentPos ].info != EMPTY &&
10 array[ currentPos ].element != x )
11 {
12 currentPos += offset; // Compute ith probe
13 offset += 2;
14 if( currentPos >= array.size( ) )
15 currentPos -= array.size( );
16 }
17
18 return currentPos;
19 }
20
21 bool isActive( int currentPos ) const
22 { return array[ currentPos ].info == ACTIVE; }

Cpt S 223. School of EECS, WSU

43



Quadratic Probing:
Implementation

1 bool insert( const HashedObj & x )

2 {

3 // Insert x as active

4 int currentPos = findPos( x );

5 if( isActive( currentPos ) )

7

8 array[ currentPos ] = HashEntry( x, ACTIVE );
9
10 // Rehash; see Section 5.5
11 if( +tcurrentSize > array.size( ) / 2 )
12 rehash( );
13
14 return true;
15 }
16

17 bool remove( const HashedObj & x )
18 {

19 int currentPos = findPos( x );
20 if( lisActive( currentPos ) )

21 return false;

22

23 array[ currentPos ].info = DELETED;
24 return true;

25 }

Cpt S 223. School of EECS, WSU



Double Hashing: keep two
i hash functions h, and h,

= Use a second hash function for all tries I
other than O: () =i * ho(x)
= Good choices for h,(x) ?
= Should never evaluate to 0
= h,(X) = R—=(x mod R)
= R is prime number less than TableSize
= Previous example with R=7
= hy(49) = (h(49)+f(0)) mod 10 = 9 (X)
= h,(49) = (h(49)+1*(7 — 49 mod 7)) mod 10 = 6

Cpt S 223. School of EECS, 45




‘L Double Hashing Example

Empty Table  After 89  After 18  After49  After 58  After 69

0 69
1
2
3 58 58
4
5
6 49 49 49
7
8 18 18 18 18
9 89 89 89 89 89

Cpt S 223. School of EECS, WSU



i Double Hashing: Analysis

= Imperative that TableSize is prime
» E.g., insert 23 into previous table

= Empirical tests show double hashing
close to random hashing

s Extra hash function takes extra time to
compute

Cpt S 223. School of EECS, WSU

47



i Probing Techniques - review

Linear probing:

-

:

oty

1 st tw
2nd try

3rd try

Quadratic probing:

<

-

Cpt S 223. School of EECS, WSU

Oth try

stiry

Double hashing”:

/ oth try

nd try

1St tw

3 try

*(determined by a second
hash function)



i Rehashing

= Increases the size of the hash table when load factor
becomes “too high” (defined by a cutoff)

= Anticipating that prob(collisions) would become
higher

= Typically expand the table to twice its size (but still
prime)

= Need to reinsert all existing elements into new hash
table

Cpt S 223. School of EECS, WSU 49



‘L Rehashing Example

h(x) = x mod 7
A=0.57

A=0.71

0 6 0
1 15 1
2
2 h(x)=xmod 17
3 24 A=0.29 A
! 5
. 6
6 13 .
Rehashing 8
Insert 23 9
0 6 10
1 15 11
2 23 12
13

3 24
14
! 15
> 16
6 13 Cpt S 223. School of EECS, WS

23

24

13

15

50



i Rehashing Analysis

= Rehashing takes time to do N insertions
= Therefore should do it infrequently

= Specifically

= Must have been N/2 insertions since last
rehash

« Amortizing the O(N) cost over the N/2 prior
insertions yields only constant additional
time per insertion

Cpt S 223. School of EECS, WSU 51



i Rehashing Implementation

= When to rehash

= When load factor reaches some threshold
(e.g,. A =20.5), OR

= When an insertion fails

= Applies across collision handling
schemes

Cpt S 223. School of EECS, WSU

52



Rehashing for Chaining

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/**

* Rehashing for separate chaining hash table.
*/

void rehash( )

{

vector<list<HashedObj> > oldLists = thelLists;

// Create new double-sized, empty table
theLists.resize( nextPrime( 2 * theLists.size( ) ) );
for( int j = 0; j < theLists.size( ); j++ )

theLists[ j ].clear( );

// Copy table over
currentSize = 0;
for( int i = 0; i < oldLists.size( ); i++ )
{
list<HashedObj>::iterator itr = oldLists[ i ].begin( );
while( itr != oldLists[ i J.end( ) )
insert( *itr++ );

} Cpt S 223. School of EECS, WSU

53



Rehashing for
Quadratic Probing

1 /**

2 * Rehashing for quadratic probing hash table.
3 *f

4 void rehash( )

5 {

§) vector<HashEntry> oldArray = array;

7

8 // Create new double-sized, empty table
9 array.resize( nextPrime( 2 * oldArray.size( ) ) );
10 for( int j = 0; j < array.size( ); j++ )

11 array[ j ].info = EMPTY;

12

13 // Copy table over
14 currentSize = 0;
15 for( int i = 0; i < oldArray.size( ); i++ )
16 if( oldArray[ i ].info == ACTIVE )
17 insert( oldArray[ i ].element );

18 }

Cpt S 223. School of EECS, WSU

54



i Hash Tables in C++ STL

= Hash tables not part of the C++
Standard Library

= Some implementations of STL have
hash tables (e.g., SGI's STL)

= hash_ set
= hash_map

Cpt S 223. School of EECS, WSU

55



Hash Set in STL

#include <hash_set>

struct egstr

{

bool operator()(const char* sl1, const char* s2) const

{

}
3

return strcmp(sl, s2) == 0;

void lookup(const hash_set<const char*, hash<const char*>, eqstr>& Set,
const char* word)
{
hash_set<const char*, hash<const char*>, eqstr>::const_iterator it
= Set.find(word);
cout << word << ": "

<< (it I= Set.end() ? "present” : "not present’)
<< endl;

}

int mainQ)

{

hash_set<const char*, hash<const char*>, eqstr> Set;
Set.insert("kiwi™);
lookup(Set, “kiwi™);

3 Cpt S 223. School of EECS, WSU

56



Hash Map in STL

Internally
treated

like insert

(or overwrite

if key

already present)

#include <hash_map>

struct egstr

{

}-

{

}

bool operator() (const char* sl1, const char* s2) const

{
}

return strcmp(sl, s2) == 0;

hash_map<const char* |nt hash<const char*>, eqgstr> months;
months["january™] =
months["'february'] =

months["'december™] = 31;
cout << “January -> " << months[“january'] << endl;

Cpt S 223. School of EECS, WSU

57



i Problem with Large Tables

= What if hash table is too large to store
IN main memory?

= Solution: Store hash table on disk
= Minimize disk accesses

= But...

= Collisions require disk accesses
= Rehashing requires a lot of disk accesses

Solution: Extendible Hashing

Cpt S 223. School of EECS, WSU

58



Hash Table Applications

= Symbol table in compilers
= Accessing tree or graph nodes by nhame
« E.g., city names in Google maps
= Maintaining a transposition table in games

= Remember previous game situations and the move taken
(avoid re-computation)

= Dictionary lookups

= Spelling checkers

= Natural language understanding (word sense)
= Heavily used in text processing languages

= E.qg., Perl, Python, etc.

Cpt S 223. School of EECS, WSU

59



:L Summary

= Hash tables support fast insert and
search

= O(1) average case performance

= Deletion possible, but degrades
performance

= Not suited if ordering of elements is
important

= Many applications

Cpt S 223. School of EECS, WSU

60



Points to remember - Hash

i tables

= Table size prime

Table size much larger than number of inputs
(to maintain A closer to 0 or < 0.5)

Tradeoffs between chaining vs. probing

Collision chances decrease in this order:
linear probing => quadratic probing =>
{random probing, double hashing}

Rehashing required to resize hash table at a
time when A exceeds 0.5

Good for searching. Not good if there is some
order implied bysaataoo o eecs, wsu 61



