
Hashing & Hash TablesHashing & Hash Tables

111111Cpt S 223. School of EECS, WSU

Overview
 Hash Table Data Structure : Purpose

 To support insertion, deletion and search in
t t tiaverage-case constant time

 Assumption: Order of elements irrelevant
 ==> data structure *not* useful for if you want to

i t i d t i ki d f d f thmaintain and retrieve some kind of an order of the
elements

 Hash function
 Hash[“string key”] ==> integer value

 Hash table ADT
I l t ti A l i A li ti

22222

 Implementations, Analysis, Applications

Cpt S 223. School of EECS, WSU

Hash table: Main components

key value

Hash index

e

“john”

key

h(“john”)

Ta
bl

eS
iz

e

key
Hash
function

Hash table
(implemented as a vector)How to determine … ? 3

Cpt S 223. School of EECS, WSU

Hash Table
 Hash table is an array of fixed

size TableSize key Element value

 Array elements indexed by a
key, which is mapped to an
array index (0…TableSize-1)

 Mapping (hash function) h Mapping (hash function) h
from key to index
 E.g., h(“john”) = 3

4Cpt S 223. School of EECS, WSU

Hash Table Operations
Hash
f ti

 Insert
 T [h(“john”)] = <“john”,25000>

Hash key function

 Delete
 T [h(“john”)] = NULL

Data
record

 T [h(john)] = NULL

 Search
 T [h(“john”)] returns the

element hashed for “john”

What happens if h(“john”) == h(“joe”) ?

5Cpt S 223. School of EECS, WSU

What happens if h(john) == h(joe) ?
“collision”

Factors affecting Hash Table
Design

 Hash function

 Table size
 Usually fixed at the starty

 Collision handling schemeCollision handling scheme

6Cpt S 223. School of EECS, WSU

Hash Function

 A hash function is one which maps an
element’s key into a valid hash table index
 h(key) => hash table index

Note that this is (slightly) different from saying:
h(string) => int

Because the key can be of any type Because the key can be of any type
 E.g., “h(int) => int” is also a hash function!

 But also note that any type can be converted into y yp
an equivalent string form

Cpt S 223. School of EECS, WSU 7

h(key) ==> hash table index

Hash Function Properties
 A hash function maps key to integer

 Constraint: Integer should be between
[0, TableSize-1]

 A hash function can result in a many-to-one mapping
(causing collision)(causing collision)
 Collision occurs when hash function maps two or more keys

to same array index

C lli i t b id d b t it h b Collisions cannot be avoided but its chances can be
reduced using a “good” hash function

8Cpt S 223. School of EECS, WSU

h(key) ==> hash table index

Hash Function Properties

 A “good” hash function should have the
properties:properties:
1. Reduced chance of collision

Different keys should ideally map to differentDifferent keys should ideally map to different
indices
Distribute keys uniformly over table

2. Should be fast to compute

99Cpt S 223. School of EECS, WSU

Hash Function - Effective use
of table size
 Simple hash function (assume integer keys)

 h(Key) = Key mod TableSize

 For random keys, h() distributes keys evenly
over tableover table
 What if TableSize = 100 and keys are ALL

multiples of 10?
 Better if TableSize is a prime number

10Cpt S 223. School of EECS, WSU

Different Ways to Design a
Hash Function for String Keys
A very simple function to map strings to integers:
 Add up character ASCII values (0-255) to produce

integer keysinteger keys
 E.g., “abcd” = 97+98+99+100 = 394
 ==> h(“abcd”) = 394 % TableSize

Potential problems:Potential problems:
 Anagrams will map to the same index

 h(“abcd”) == h(“dbac”)

 Small strings may not use all of table
 Strlen(S) * 255 < TableSize

 Time proportional to length of the stringTime proportional to length of the string

11Cpt S 223. School of EECS, WSU

Different Ways to Design a
Hash Function for String Keys
 Approach 2

 Treat first 3 characters of string as base-27 integer (26
letters plus space)letters plus space)
 Key = S[0] + (27 * S[1]) + (272 * S[2])

 Better than approach 1 because … ?

Potential problems:
 Assumes first 3 characters randomly distributed

 Not true of English
Apple
Apply
Appointment

collision

12

pp
Apricot

12Cpt S 223. School of EECS, WSU

Different Ways to Design a
Hash Function for String Keys
 Approach 3

Use all N characters of string as an
N-digit base-K numberg

 Choose K to be prime number
larger than number of different
digits (characters)

 I.e., K = 29, 31, 37

 If L = length of string S, then
L 1

 Use Horner’s rule to compute h(S)
Li it L f l t i

TableSizeiLSSh
L

i

i mod37]1[)(
1

0

 Problems:
potential overflow

 Limit L for long strings

13

larger runtime

Cpt S 223. School of EECS, WSU

“Collision resolution techniques”

T h i t D l ith

q

Techniques to Deal with
CollisionsCollisions

Chaining
Open addressingOpen addressing
Double hashing
EtcEtc.

Cpt S 223. School of EECS, WSU 14

Resolving Collisions

 What happens when h(k1) = h(k2)?
 ==> collision ! > collision !

 Collision resolution strategies
Chaining Chaining
 Store colliding keys in a linked list at the same

hash table indexhash table index

 Open addressing
 Store colliding keys elsewhere in the tableg y

15Cpt S 223. School of EECS, WSU

Ch i iChaining

Collision resolution technique #1

16Cpt S 223. School of EECS, WSU

Chaining strategy: maintains a linked list atChaining strategy: maintains a linked list at
every hash index for collided elements

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 }

 Hash table T is a vector of
linked lists

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 }

 Insert element at the head
(as shown here) or at the tail

 Key k is stored in list at Key k is stored in list at
T[h(k)]

 E.g., TableSize = 10g
 h(k) = k mod 10
 Insert first 10 perfect

squaressquares

17Cpt S 223. School of EECS, WSU

Implementation of Chaining
Hash Table

Vector of linked lists
(this is the main
hashtable)

Current #elements in
the hashtable

Hash functions for
i t d t i

the hashtable

18

integers and string
keys

Cpt S 223. School of EECS, WSU

Implementation of Chaining
Hash Table

This is the hashtable’s
current capacitycurrent capacity
(aka. “table size”)

This is the hash table
index for the element
x

19Cpt S 223. School of EECS, WSU

x

Duplicate check

Later, but essentially
resizes the hashtable if its
getting crowded

20Cpt S 223. School of EECS, WSU

Each of theseEach of these
operations takes time
linear in the length of
the list at the hashed

21

index location

Cpt S 223. School of EECS, WSU

All hash objects must
define == and !=
operators.

Hash function to
handle Employee

22

object type

Cpt S 223. School of EECS, WSU

Collision Resolution by
Chaining: Analysis
 Load factor λ of a hash table T is defined as follows:

 N = number of elements in T (“current size”)
M i f T (“t bl i ”) M = size of T (“table size”)

 λ = N/M (“ load factor”)
 i.e., λ is the average length of a chain

 Unsuccessful search time: O(λ)
 Same for insert time Same for insert time

 Successful search time: O(λ/2)
 Ideally, want λ ≤ 1 (not a function of N)

23Cpt S 223. School of EECS, WSU

Potential disadvantages of
Chaining
Linked lists could get long

 Especially when N approaches M
L li k d li t ld ti l i t Longer linked lists could negatively impact
performance

More memory because of pointers

Absolute worst-case (even if N << M):
 All N elements in one linked list!
 Typically the result of a bad hash function

Cpt S 223. School of EECS, WSU 24

O Add iOpen Addressing

Collision resolution technique #2

25Cpt S 223. School of EECS, WSU

Collision Resolution by
An “inplace” approach

Open Addressing
When a collision occurs, look elsewhere in the

table for an empty slot
 Advantages over chaining

 No need for list structures
 No need to allocate/deallocate memory during o eed o a oca e/dea oca e e o y du g

insertion/deletion (slow)

 Disadvantages
Slower insertion May need several attempts to find an Slower insertion – May need several attempts to find an
empty slot

 Table needs to be bigger (than chaining-based table) to
achieve average case constant time performanceachieve average-case constant-time performance
 Load factor λ ≈ 0.5

26Cpt S 223. School of EECS, WSU

Collision Resolution by
Open Addressing
 A “Probe sequence” is a sequence of slots in hash table while

searching for an element x
 h0(x) h1(x) h2(x) h0(x), h1(x), h2(x), …
 Needs to visit each slot exactly once
 Needs to be repeatable (so we can find/delete what we’ve

inserted)inserted)

 Hash function
 hi(x) = (h(x) + f(i)) mod TableSize
 f(0) = 0 ==> position for the 0th probe
 f(i) is “the distance to be traveled relative to the 0th probe () p

position, during the ith probe”.

27Cpt S 223. School of EECS, WSU

Linear Probing
ith probe
index =

0th probe
index + i

 f(i) = is a linear function of i,
index + i

Linear probing:

0th b
E.g., f(i) = i

h (x) = (h(x) + i) mod TableSize

i
0th probe

1st probe

2nd probe

occupied

occupied
hi(x) = (h(x) + i) mod TableSize2 probe

3rd probe

…

occupied

Probe sequence: +0, +1, +2, +3, +4, …
unoccupied Populate x here

28Cpt S 223. School of EECS, WSU

Continue until an empty slot is found
#failed probes is a measure of performance

ith probe
index =

0th probe
index + i

Linear Probing
 f(i) = is a linear function of i, e.g., f(i) = i

 hi(x) = (h(x) + i) mod TableSize

 Probe sequence: +0, +1, +2, +3, +4, …
 Example: h(x) = x mod TableSize Example: h(x) = x mod TableSize

 h0(89) = (h(89)+f(0)) mod 10 = 9
 h0(18) = (h(18)+f(0)) mod 10 = 8
 h0(49) = (h(49)+f(0)) mod 10 = 9 (X)
 h1(49) = (h(49)+f(1)) mod 10

= (h(49)+ 1) mod 10 = 0= (h(49)+ 1) mod 10 = 0

29Cpt S 223. School of EECS, WSU

Linear Probing Example
I t 89 18 49 58 69 timeInsert sequence: 89, 18, 49, 58, 69

30

#unsuccessful
probes:

0 0 1 3 3 7
totalCpt S 223. School of EECS, WSU

Linear Probing: Issues

Probe sequences can get longer with time
Primary clusteringPrimary clustering

 Keys tend to cluster in one part of table
Keys that hash into cluster will be added to Keys that hash into cluster will be added to
the end of the cluster (making it even
bigger)bigger)

 Side effect: Other keys could also get
affected if mapping to a crowdedaffected if mapping to a crowded
neighborhood

31Cpt S 223. School of EECS, WSU

Linear Probing: Analysis
 Expected number of

probes for insertion or
unsuccessful search

 Example (λ = 0.5)
 Insert / unsuccessful

searchunsuccessful search search
 2.5 probes

 Successful search
1 5 b

 2)1(
11

2
1

 Expected number of
probes for successful

 1.5 probes

 Example (λ = 0.9)
 Insert / unsuccessful

)1(2

search
/

search
 50.5 probes

 Successful search

)1(
11

2
1

 Successful search
 5.5 probes

32

)1(2

Cpt S 223. School of EECS, WSU

Random Probing: Analysis

 Random probing does not suffer from
clustering

 Expected number of probes for insertion or
unsuccessful search: 1l1

 Example
 1

ln

 λ = 0.5: 1.4 probes
 λ = 0.9: 2.6 probes

33Cpt S 223. School of EECS, WSU

Linear vs. Random Probing
es

Linear probing
Random probing

pr

ob
e

good bad

34

Load factor λU - unsuccessful search
S - successful search
I - insert

Cpt S 223. School of EECS, WSU

Quadratic Probing

 Avoids primary clustering
 f(i) is quadratic in i

Quadratic probing:
0th probe

1st probe f(i) is quadratic in i
e.g., f(i) = i2

h (x) = (h(x) + i2) mod

i 1st probe

2nd probe

occupied

occupied

hi(x) = (h(x) + i) mod
TableSize

 Probe sequence:3rd probe

occupied

q
+0, +1, +4, +9, +16, …

…

35Cpt S 223. School of EECS, WSU

Continue until an empty slot is found
#failed probes is a measure of performance

occupied

Quadratic Probing

 Avoids primary clustering
 f(i) is quadratic in I e g f(i) = i2 f(i) is quadratic in I, e.g., f(i) = i

 hi(x) = (h(x) + i2) mod TableSize
 Probe sequence: +0 +1 +4 +9 +16 Probe sequence: +0, +1, +4, +9, +16, …

 Example:
h (58) (h(58) f(0)) d 10 8 (X) h0(58) = (h(58)+f(0)) mod 10 = 8 (X)

 h1(58) = (h(58)+f(1)) mod 10 = 9 (X)
h (8) (h(8) f(2)) d 0 2 h2(58) = (h(58)+f(2)) mod 10 = 2

36Cpt S 223. School of EECS, WSU

Q) Delete(49), Find(69) - is there a problem?

Quadratic Probing Example
I t 89 18 49 58 69

+12

+12

Insert sequence: 89, 18, 49, 58, 69

+22

+22

+12

2+02

+12 +02+02
+02

+02

37

#unsuccessful
probes:

0 0 1 2 2 5
totalCpt S 223. School of EECS, WSU

Quadratic Probing: Analysis

 Difficult to analyze
 Theorem 5.1

 New element can always be inserted into a table
that is at least half empty and TableSize is prime

 Otherwise, may never find an empty slot,
even is one exists

 Ensure table never gets half full
 If close, then expand it

38Cpt S 223. School of EECS, WSU

Quadratic Probing

 May cause “secondary clustering”

 Deletion
 Emptying slots can break probe sequence and p y g p q

could cause find stop prematurely
 Lazy deletion

Diff ti t b t t d d l t d l t Differentiate between empty and deleted slot
 When finding skip and continue beyond deleted slots

 If you hit a non-deleted empty slot, then stop find procedure
returning “not found”returning “not found”

 May need compaction at some time
39Cpt S 223. School of EECS, WSU

Quadratic Probing:
Implementation

40Cpt S 223. School of EECS, WSU

Quadratic Probing:
Implementation

Lazy deletion

41Cpt S 223. School of EECS, WSU

Quadratic Probing:
Implementation

Ensure table
size is prime

42Cpt S 223. School of EECS, WSU

Quadratic Probing:
Implementation

Find

Skip DELETED;
No duplicatesNo duplicates

Quadratic probe
sequence (really)

43Cpt S 223. School of EECS, WSU

Quadratic Probing:
Implementation

Insert

No duplicatesNo duplicates

Remove

44

No deallocation
needed

Cpt S 223. School of EECS, WSU

Double Hashing: keep two
hash functions h1 and h2

 Use a second hash function for all tries I
other than 0: f(i) = i * h2(x)

 Good choices for h2(x) ?
 Should never evaluate to 0
 h2(x) = R – (x mod R)

 R is prime number less than TableSize

P i l ith R 7 Previous example with R=7
 h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

h (49) = (h(49)+1*(7 49 mod 7)) mod 10 = 6

45

 h1(49) = (h(49)+1*(7 – 49 mod 7)) mod 10 = 6

f(1) 45Cpt S 223. School of EECS, WSU

Double Hashing Example

46Cpt S 223. School of EECS, WSU

Double Hashing: Analysis

 Imperative that TableSize is prime
 E g insert 23 into previous table E.g., insert 23 into previous table

 Empirical tests show double hashing
close to random hashingclose to random hashing

 Extra hash function takes extra time to
tcompute

47Cpt S 223. School of EECS, WSU

Probing Techniques - review

Linear probing:

0th t

Quadratic probing: Double hashing*:

i
0th try

i
0th try

1st try

2nd t

1st try

2nd try

i
0th try

2nd try2 try

3rd try

…

3rd try t

2nd try

3rd try

…

1st try

…

3rd try

…

*(determined by a second
hash function) 48Cpt S 223. School of EECS, WSU

Rehashing
 Increases the size of the hash table when load factor

becomes “too high” (defined by a cutoff)
 Anticipating that prob(collisions) would become

higher
 Typically expand the table to twice its size (but still Typically expand the table to twice its size (but still

prime)
 Need to reinsert all existing elements into new hash

table

49Cpt S 223. School of EECS, WSU

Rehashing Example

h(x) = x mod 7
λ 0 57

h(x) = x mod 17
λ 0 29λ = 0.57 λ = 0.29

Rehashing
Insert 23

λ = 0.71

50Cpt S 223. School of EECS, WSU

Rehashing Analysis

 Rehashing takes time to do N insertions
 Therefore should do it infrequently Therefore should do it infrequently
 Specifically

M t h b N/2 i ti i l t Must have been N/2 insertions since last
rehash
A ti i th O(N) t th N/2 i Amortizing the O(N) cost over the N/2 prior
insertions yields only constant additional
time per insertiontime per insertion

51Cpt S 223. School of EECS, WSU

Rehashing Implementation

 When to rehash
 When load factor reaches some threshold When load factor reaches some threshold

(e.g,. λ ≥0.5), OR
 When an insertion failsWhen an insertion fails

 Applies across collision handling
schemesschemes

52Cpt S 223. School of EECS, WSU

Rehashing for Chaining

53Cpt S 223. School of EECS, WSU

Rehashing for
Quadratic Probing

54Cpt S 223. School of EECS, WSU

Hash Tables in C++ STL

 Hash tables not part of the C++
Standard LibraryStandard Library

 Some implementations of STL have
hash tables (e g SGI’s STL)hash tables (e.g., SGI s STL)
 hash_set
 hash map hash_map

55Cpt S 223. School of EECS, WSU

Hash Set in STL
#include <hash set>#include <hash_set>

struct eqstr
{

bool operator()(const char* s1, const char* s2) const
{{

return strcmp(s1, s2) == 0;
}

};

void lookup(const hash_set<const char*, hash<const char*>, eqstr>& Set,
const char* word)

{
hash_set<const char*, hash<const char*>, eqstr>::const_iterator it

= Set.find(word);
cout << word << ": "

<< (it != Set end() ? "present" : "not present")<< (it != Set.end() ? "present" : "not present")
<< endl;

}

int main()
{

Key Hash fn Key equality test

56

{
hash_set<const char*, hash<const char*>, eqstr> Set;
Set.insert("kiwi");
lookup(Set, “kiwi");

} Cpt S 223. School of EECS, WSU

Hash Map in STL
#i l d <h h >#include <hash_map>

struct eqstr
{

bool operator() (const char* s1, const char* s2) const
{
return strcmp(s1, s2) == 0;

}
};

int main()
{

hash_map<const char*, int, hash<const char*>, eqstr> months;
months["january"] = 31;

Key Data Hash fn Key equality test

Internally
treated months["february"] = 28;

…
months["december"] = 31;
cout << “january -> " << months[“january"] << endl;

}

treated
like insert
(or overwrite
if key
already present)

57

}

Cpt S 223. School of EECS, WSU

Problem with Large Tables

 What if hash table is too large to store
in main memory?in main memory?

 Solution: Store hash table on disk
Minimize disk accesses Minimize disk accesses

 But…
ll d k Collisions require disk accesses

 Rehashing requires a lot of disk accesses

58

Solution: Extendible Hashing

Cpt S 223. School of EECS, WSU

Hash Table Applications
 Symbol table in compilers
 Accessing tree or graph nodes by name

 E.g., city names in Google mapsg , c ty a es Goog e aps
 Maintaining a transposition table in games

 Remember previous game situations and the move taken
(avoid re-computation)(avoid re computation)

 Dictionary lookups
 Spelling checkers

N t l l d t di (d) Natural language understanding (word sense)
 Heavily used in text processing languages

 E.g., Perl, Python, etc.

59Cpt S 223. School of EECS, WSU

Summary

 Hash tables support fast insert and
searchsearch
 O(1) average case performance
 Deletion possible but degrades Deletion possible, but degrades

performance

 Not suited if ordering of elements is Not suited if ordering of elements is
important
Many applications Many applications

60Cpt S 223. School of EECS, WSU

Points to remember - Hash
tables
 Table size prime
 Table size much larger than number of inputs

(to maintain λ closer to 0 or < 0.5)
 Tradeoffs between chaining vs. probing

C lli i h d i hi d Collision chances decrease in this order:
linear probing => quadratic probing =>
{random probing, double hashing}{random probing, double hashing}

 Rehashing required to resize hash table at a
time when λ exceeds 0.5

 Good for searching. Not good if there is some
order implied by data. 61Cpt S 223. School of EECS, WSU

