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Overview
 Hash Table Data Structure : Purpose

 To support insertion, deletion and search in 
t t tiaverage-case constant time

 Assumption: Order of elements irrelevant
 ==> data structure *not* useful for if you want to 

i t i d t i ki d f d f thmaintain and retrieve some kind of an order of the 
elements

 Hash function
 Hash[ “string key”] ==> integer value

 Hash table ADT
I l t ti A l i A li ti

22222

 Implementations, Analysis, Applications
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Hash table: Main components

key value

Hash index

e

“john”

key

h(“john”)

Ta
bl

eS
iz

e

key
Hash 
function

Hash table
(implemented as a vector)How to determine … ? 3

Cpt S 223. School of EECS, WSU



Hash Table
 Hash table is an array of fixed 

size TableSize key Element value

 Array elements indexed by a 
key, which is mapped to an 
array index (0…TableSize-1)

 Mapping (hash function) h Mapping (hash function) h 
from key to index
 E.g., h(“john”) = 3
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Hash Table Operations
Hash 
f ti

 Insert
 T [h(“john”)] = <“john”,25000>

Hash key function

 Delete
 T [h(“john”)] = NULL

Data 
record

 T [h( john )] = NULL

 Search
 T [h(“john”)] returns the 

element hashed for “john”

What happens if h(“john”) == h(“joe”) ?
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“collision”



Factors affecting Hash Table 
Design

 Hash function

 Table size
 Usually fixed at the starty

 Collision handling schemeCollision handling scheme
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Hash Function

 A hash function is one which maps an 
element’s key into a valid hash table index
 h(key) => hash table index

Note that this is (slightly) different from saying: 
h(string) => int

Because the key can be of any type Because the key can be of any type
 E.g., “h(int) => int”  is also a hash function!

 But also note that any type can be converted into y yp
an equivalent string form
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h(key) ==> hash table index

Hash Function Properties
 A hash function maps key to integer

 Constraint: Integer should be between 
[0, TableSize-1]

 A hash function can result in a many-to-one mapping 
(causing collision)(causing collision)
 Collision occurs when hash function maps two or more keys 

to same array index

C lli i t b id d b t it h b Collisions cannot be avoided but its chances can be 
reduced using a “good” hash function
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h(key) ==> hash table index

Hash Function Properties

 A “good” hash function should have the 
properties:properties:
1. Reduced chance of collision

Different keys should ideally map to differentDifferent keys should ideally map to different 
indices
Distribute keys uniformly over table 

2. Should be fast to compute
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Hash Function - Effective use 
of table size
 Simple hash function (assume integer keys)

 h(Key) = Key mod TableSize

 For random keys, h() distributes keys evenly 
over tableover table
 What if TableSize = 100 and keys are ALL 

multiples of 10?
 Better if TableSize is a prime number
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Different Ways to Design a 
Hash Function for String Keys
A very simple function to map strings to integers:
 Add up character ASCII values (0-255) to produce 

integer keysinteger keys
 E.g., “abcd” = 97+98+99+100 = 394
 ==> h(“abcd”) = 394 % TableSize 

Potential problems:Potential problems:
 Anagrams will map to the same index

 h(“abcd”) == h(“dbac”)

 Small strings may not use all of table
 Strlen(S) * 255 < TableSize

 Time proportional to length of the stringTime proportional to length of the string
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Different Ways to Design a 
Hash Function for String Keys
 Approach 2

 Treat first 3 characters of string as base-27 integer (26 
letters plus space)letters plus space)
 Key = S[0] + (27 * S[1]) + (272 * S[2])

 Better than approach 1 because … ?

Potential problems:
 Assumes first 3 characters randomly distributed

 Not true of English
Apple
Apply
Appointment

collision

12

pp
Apricot
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Different Ways to Design a 
Hash Function for String Keys
 Approach 3

Use all N characters of string as an 
N-digit base-K numberg

 Choose K to be prime number 
larger than number of different 
digits (characters)

 I.e., K = 29, 31, 37

 If L = length of string S, then
L 1 

 Use Horner’s rule to compute h(S)
Li it L f l t i

TableSizeiLSSh
L

i

i mod37]1[)(
1

0








 



 Problems:
potential overflow 

 Limit L for long strings

13

larger runtime
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“Collision resolution techniques”

T h i t D l ith

q

Techniques to Deal with 
CollisionsCollisions

Chaining
Open addressingOpen addressing
Double hashing
EtcEtc.
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Resolving Collisions

 What happens when h(k1) = h(k2)?
 ==> collision ! > collision !

 Collision resolution strategies
Chaining Chaining
 Store colliding keys in a linked list at the same 

hash table indexhash table index

 Open addressing
 Store colliding keys elsewhere in the tableg y
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Ch i iChaining

Collision resolution technique #1
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Chaining strategy: maintains a linked list atChaining strategy: maintains a linked list at 
every hash index for collided elements

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 }

 Hash table T is a vector of 
linked lists

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 } 

 Insert element at the head 
(as shown here) or at the tail

 Key k is stored in list at Key k is stored in list at 
T[h(k)]

 E.g., TableSize = 10g
 h(k) = k mod 10
 Insert first 10 perfect 

squaressquares
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Implementation of Chaining 
Hash Table

Vector of linked lists
(this is the main 
hashtable)

Current #elements in 
the hashtable

Hash functions for 
i t d t i

the hashtable

18

integers and string 
keys
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Implementation of Chaining 
Hash Table

This is the hashtable’s 
current capacitycurrent capacity 
(aka. “table size”)

This is the hash table 
index for the element 
x
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Duplicate check

Later, but essentially 
resizes the hashtable if its 
getting crowded
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Each of theseEach of these 
operations takes time 
linear in the length of 
the list at the hashed 

21

index location
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All hash objects must 
define == and != 
operators.

Hash function to 
handle Employee 

22

object type
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Collision Resolution by 
Chaining: Analysis
 Load factor λ of a hash table T is defined as follows:

 N = number of elements in T (“current size”)
M i f T (“t bl i ”) M = size of T (“table size”)

 λ = N/M (“ load factor”)
 i.e., λ is the average length of a chain

 Unsuccessful search time: O(λ)
 Same for insert time Same for insert time

 Successful search time:  O(λ/2)
 Ideally, want λ ≤ 1 (not a function of N)
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Potential disadvantages of 
Chaining
Linked lists could get long

 Especially when N approaches M 
L li k d li t ld ti l i t Longer linked lists could negatively impact 
performance

More memory because of pointers

Absolute worst-case (even if N << M):
 All N elements in one linked list!
 Typically the result of a bad hash function
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O Add iOpen Addressing

Collision resolution technique #2
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Collision Resolution by
An “inplace” approach

Open Addressing
When a collision occurs, look elsewhere in the 

table for an empty slot
 Advantages over chaining

 No need for list structures
 No need to allocate/deallocate memory during o eed o a oca e/dea oca e e o y du g

insertion/deletion (slow)

 Disadvantages
Slower insertion May need several attempts to find an Slower insertion – May need several attempts to find an 
empty slot

 Table needs to be bigger (than chaining-based table) to 
achieve average case constant time performanceachieve average-case constant-time performance
 Load factor λ ≈ 0.5
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Collision Resolution by
Open Addressing
 A “Probe sequence” is a sequence of slots in hash table while 

searching for an element x
 h0(x) h1(x) h2(x) h0(x), h1(x), h2(x), …
 Needs to visit each slot exactly once
 Needs to be repeatable (so we can find/delete what we’ve 

inserted)inserted)

 Hash function
 hi(x) = (h(x) + f(i)) mod TableSize
 f(0) = 0 ==> position for the 0th probe
 f(i) is “the distance to be traveled relative to the 0th probe ( ) p

position, during the ith probe”.
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Linear Probing
ith probe 
index =

0th probe 
index + i

 f(i) = is a linear function of i, 
index  + i

Linear probing:

0th b
E.g., f(i) = i

h (x) = (h(x) + i) mod TableSize

i
0th probe

1st probe

2nd probe

occupied

occupied
hi(x) = (h(x) + i) mod TableSize2 probe

3rd probe

…

occupied

Probe sequence: +0, +1, +2, +3, +4, … 
unoccupied Populate x here
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Continue until an empty slot is found
#failed probes is a measure of performance



ith probe 
index = 

0th probe 
index + i

Linear Probing
 f(i) = is a linear function of i, e.g., f(i) = i

 hi(x) = (h(x) + i) mod TableSize

 Probe sequence: +0, +1, +2, +3, +4, … 
 Example: h(x) = x mod TableSize Example: h(x) = x mod TableSize

 h0(89) = (h(89)+f(0)) mod 10 = 9
 h0(18) = (h(18)+f(0)) mod 10 = 8
 h0(49) = (h(49)+f(0)) mod 10 = 9 (X)
 h1(49) = (h(49)+f(1)) mod 10

= (h(49)+ 1 ) mod 10 = 0= (h(49)+  1 ) mod 10 = 0
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Linear Probing Example
I t 89 18 49 58 69 timeInsert sequence: 89, 18, 49, 58, 69

30

#unsuccessful 
probes:

0 0 1 3 3 7
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Linear Probing: Issues

Probe sequences can get longer with time
Primary clusteringPrimary clustering

 Keys tend to cluster in one part of table
Keys that hash into cluster will be added to Keys that hash into cluster will be added to 
the end of the cluster (making it even 
bigger)bigger)

 Side effect: Other keys could also get 
affected if mapping to a crowdedaffected if mapping to a crowded 
neighborhood
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Linear Probing: Analysis
 Expected number of 

probes for insertion or 
unsuccessful search

 Example (λ = 0.5)
 Insert / unsuccessful 

searchunsuccessful search search
 2.5 probes

 Successful search
1 5 b











 2)1(
11

2
1



 Expected number of 
probes for successful 

 1.5 probes

 Example (λ = 0.9)
 Insert / unsuccessful 

 )1(2 

search
/

search
 50.5 probes

 Successful search









)1(
11

2
1

 Successful search
 5.5 probes

32





  )1(2 
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Random Probing: Analysis

 Random probing does not suffer from 
clustering

 Expected number of probes for insertion or 
unsuccessful search: 1l1

 Example
 1

ln

 λ = 0.5: 1.4 probes
 λ = 0.9: 2.6 probes
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Linear vs. Random Probing
es

Linear probing
Random probing

# 
pr

ob
e

good bad

34

Load factor λU - unsuccessful search
S - successful search
I - insert
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Quadratic Probing

 Avoids primary clustering
 f(i) is quadratic in i

Quadratic probing:
0th probe

1st probe  f(i) is quadratic in i 
e.g., f(i) = i2

h (x) = (h(x) + i2) mod

i 1st probe

2nd probe

occupied

occupied

hi(x) = (h(x) + i ) mod 
TableSize

 Probe sequence:3rd probe

occupied

q
+0, +1, +4, +9, +16, … 

…
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Continue until an empty slot is found
#failed probes is a measure of performance
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Quadratic Probing

 Avoids primary clustering
 f(i) is quadratic in I e g f(i) = i2 f(i) is quadratic in I, e.g., f(i) = i

 hi(x) = (h(x) + i2) mod TableSize
 Probe sequence: +0 +1 +4 +9 +16 Probe sequence: +0, +1, +4, +9, +16, … 

 Example:
h (58) (h(58) f(0)) d 10 8 (X) h0(58) = (h(58)+f(0)) mod 10 = 8 (X)

 h1(58) = (h(58)+f(1)) mod 10 = 9 (X)
h ( 8) (h( 8) f(2)) d 0 2 h2(58) = (h(58)+f(2)) mod 10 = 2
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Q) Delete(49), Find(69)  - is there a problem?

Quadratic Probing Example
I t 89 18 49 58 69

+12

+12

Insert sequence: 89, 18, 49, 58, 69

+22

+22

+12

2+02

+12 +02+02
+02

+02

37

#unsuccessful 
probes:

0 0 1 2 2 5
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Quadratic Probing: Analysis

 Difficult to analyze
 Theorem 5.1

 New element can always be inserted into a table 
that is at least half empty and TableSize is prime

 Otherwise, may never find an empty slot, 
even is one exists

 Ensure table never gets half full
 If close, then expand it
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Quadratic Probing

 May cause “secondary clustering”

 Deletion
 Emptying slots can break probe sequence and p y g p q

could cause find stop prematurely
 Lazy deletion

Diff ti t b t t d d l t d l t Differentiate between empty and deleted slot
 When finding skip and continue beyond deleted slots

 If you hit a non-deleted empty slot, then stop find procedure 
returning “not found”returning “not found”

 May need compaction at some time
39Cpt S 223. School of EECS, WSU



Quadratic Probing: 
Implementation
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Quadratic Probing: 
Implementation

Lazy deletion
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Quadratic Probing: 
Implementation

Ensure table 
size is prime

42Cpt S 223. School of EECS, WSU



Quadratic Probing: 
Implementation

Find

Skip DELETED;
No duplicatesNo duplicates

Quadratic probe 
sequence (really)
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Quadratic Probing: 
Implementation

Insert

No duplicatesNo duplicates

Remove

44

No deallocation 
needed
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Double Hashing: keep two 
hash functions h1 and h2

 Use a second hash function for all tries I 
other than 0: f(i) = i * h2(x)

 Good choices for h2(x) ?
 Should never evaluate to 0
 h2(x) = R – (x mod R)

 R is prime number less than TableSize

P i l ith R 7 Previous example with R=7
 h0(49) = (h(49)+f(0)) mod 10 = 9 (X)

h (49) = (h(49)+1*(7 49 mod 7)) mod 10 = 6

45

 h1(49) = (h(49)+1*(7 – 49 mod 7)) mod 10 = 6
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Double Hashing Example

46Cpt S 223. School of EECS, WSU



Double Hashing: Analysis

 Imperative that TableSize is prime
 E g insert 23 into previous table E.g., insert 23 into previous table

 Empirical tests show double hashing 
close to random hashingclose to random hashing

 Extra hash function takes extra time to 
tcompute
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Probing Techniques - review

Linear probing:

0th t

Quadratic probing: Double hashing*:

i
0th try

i
0th try

1st try

2nd t

1st try

2nd try

i
0th try

2nd try2 try

3rd try

…

3rd try t

2nd try

3rd try

…

1st try

…

3rd try

…

*(determined by a second
hash function) 48Cpt S 223. School of EECS, WSU



Rehashing
 Increases the size of the hash table when load factor 

becomes “too high” (defined by a cutoff)
 Anticipating that prob(collisions) would become 

higher
 Typically expand the table to twice its size (but still Typically expand the table to twice its size (but still 

prime)
 Need to reinsert all existing elements into new hash 

table
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Rehashing Example

h(x) = x mod 7
λ 0 57

h(x) = x mod 17
λ 0 29λ = 0.57 λ = 0.29

Rehashing
Insert 23

λ = 0.71
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Rehashing Analysis

 Rehashing takes time to do N insertions
 Therefore should do it infrequently Therefore should do it infrequently
 Specifically

M t h b N/2 i ti i l t Must have been N/2 insertions since last 
rehash
A ti i th O(N) t th N/2 i Amortizing the O(N) cost over the N/2 prior 
insertions yields only constant additional 
time per insertiontime per insertion
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Rehashing Implementation

 When to rehash
 When load factor reaches some threshold When load factor reaches some threshold 

(e.g,. λ ≥0.5), OR
 When an insertion failsWhen an insertion fails

 Applies across collision handling 
schemesschemes
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Rehashing for Chaining
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Rehashing for
Quadratic Probing
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Hash Tables in C++ STL

 Hash tables not part of the C++ 
Standard LibraryStandard Library

 Some implementations of STL have 
hash tables (e g SGI’s STL)hash tables (e.g., SGI s STL)
 hash_set
 hash map hash_map
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Hash Set in STL
#include <hash set>#include <hash_set>

struct eqstr
{

bool operator()(const char* s1, const char* s2) const
{{

return strcmp(s1, s2) == 0;
}

};

void lookup(const hash_set<const char*, hash<const char*>, eqstr>& Set,
const char* word)

{
hash_set<const char*, hash<const char*>, eqstr>::const_iterator it

= Set.find(word);
cout << word << ": "

<< (it != Set end() ? "present" : "not present")<< (it != Set.end() ? "present" : "not present")
<< endl;

}

int main()
{

Key Hash fn Key equality test

56

{
hash_set<const char*, hash<const char*>, eqstr> Set;
Set.insert("kiwi");
lookup(Set, “kiwi");
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Hash Map in STL
#i l d <h h >#include <hash_map>

struct eqstr
{

bool operator() (const char* s1, const char* s2) const
{
return strcmp(s1, s2) == 0;

}
};

int main()
{

hash_map<const char*, int, hash<const char*>, eqstr> months;
months["january"] = 31;

Key Data Hash fn Key equality test

Internally
treated months["february"] = 28;

…
months["december"] = 31;
cout << “january -> " << months[“january"] << endl;

}

treated 
like insert
(or overwrite
if key 
already present)

57

}
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Problem with Large Tables

 What if hash table is too large to store 
in main memory?in main memory?

 Solution: Store hash table on disk
Minimize disk accesses Minimize disk accesses

 But…
ll d k Collisions require disk accesses

 Rehashing requires a lot of disk accesses

58

Solution: Extendible Hashing
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Hash Table Applications
 Symbol table in compilers
 Accessing tree or graph nodes by name

 E.g., city names in Google mapsg , c ty a es Goog e aps
 Maintaining a transposition table in games

 Remember previous game situations and the move taken 
(avoid re-computation)(avoid re computation)

 Dictionary lookups
 Spelling checkers

N t l l d t di ( d ) Natural language understanding (word sense)
 Heavily used in text processing languages

 E.g., Perl, Python, etc.
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Summary

 Hash tables support fast insert and 
searchsearch
 O(1) average case performance
 Deletion possible but degrades Deletion possible, but degrades 

performance

 Not suited if ordering of elements is Not suited if ordering of elements is 
important
Many applications Many applications
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Points to remember - Hash 
tables
 Table size prime
 Table size much larger than number of inputs 

(to maintain λ closer to 0 or < 0.5)
 Tradeoffs between chaining vs. probing

C lli i h d i hi d Collision chances decrease in this order: 
linear probing => quadratic probing => 
{random probing, double hashing}{random probing, double hashing}

 Rehashing required to resize hash table at a 
time when λ exceeds 0.5

 Good for searching. Not good if there is some 
order implied by data. 61Cpt S 223. School of EECS, WSU


