Trees
Overview

- Tree data structure
- Binary search trees
 - Support $O(\log_2 N)$ operations
 - Balanced trees
- STL set and map classes
- B-trees for accessing secondary storage
- Applications
Trees

- A is an ancestor of P
- P is a descendant of A
- G is parent of N and child of A
- M is child of F and grandchild of A

Generic Tree:

- root
 - T_1
 - T_2
 - T_3
 - T_4
 - …
 - T_{10}
Definitions

- A tree T is a set of nodes that form a directed acyclic graph (DAG) such that:
 - Each non-empty tree has a root node and zero or more sub-trees T_1, \ldots, T_k
 - Each sub-tree is a tree
 - An internal node is connected to its children by a directed edge

- Each node in a tree has only one parent
 - Except the root, which has no parent
Definitions

- Nodes with at least one child is an internal node
- Nodes with no children are leaves
- “Nodes” = Either a leaf or an internal node
- Nodes with the same parent are siblings
- A path from node n_1 to n_k is a sequence of nodes n_1, n_2, \ldots, n_k such that n_i is the parent of n_{i+1} for $1 \leq i < k$
 - The length of a path is the number of edges on the path (i.e., $k-1$)
 - Each node has a path of length 0 to itself
 - There is exactly one path from the root to each node in a tree
 - Nodes n_i, \ldots, n_k are descendants of n_i and ancestors of n_k
 - Nodes n_{i+1}, \ldots, n_k are proper descendants
 - Nodes n_i, \ldots, n_{k-1} are proper ancestors of n_i
Definitions: node relationships

B, C, D, E, F, G are siblings

B, C, H, I, P, Q, K, L, M, N are leaves

K, L, M are siblings

The path from A to Q is A – E – J – Q (with length 3)
A, E, J are proper ancestors of Q
E, J, Q, I, P are proper descendants of A
Definitions: Depth, Height

- The **depth** of a node \(n_i \) is the length of the path from the root to \(n_i \)
 - The root node has a depth of 0
 - The depth of a tree is the depth of its deepest leaf

- The **height** of a node \(n_i \) is the length of the *longest* path under \(n_i \)’s subtree
 - All leaves have a height of 0

- height of tree = height of root = depth of tree
Trees

Height of each node?
Height of tree?
Depth of each node?
Depth of tree?

- e.g., height(E)=2, height(L)=0
- = 3 (height of longest path from root)
- e.g., depth(E)=1, depth(L)=2
- = 3 (length of the path to the deepest node)
Implementation of Trees

- **Solution 1: Vector of children**

  ```cpp
  Struct TreeNode
  {
    Object element;
    vector<TreeNode> children;
  }
  ```

 Direct access to children[i] but...
 Need to know max allowed children in advance & more space

- **Solution 2: List of children**

  ```cpp
  Struct TreeNode
  {
    Object element;
    list<TreeNode> children;
  }
  ```

 Number of children can be dynamically determined but....
 more time to access children
Implementation of Trees

- Solution 3: Left-child, right-sibling

```c
struct TreeNode
{
    Object element;
    TreeNode *firstChild;
    TreeNode *nextSibling;
};
```

Guarantees 2 pointers per node (independent of #children)

But...

Access time proportional to #children

Also called “First-child, next-sibling”
Binary Trees (aka. 2-way trees)

- A **binary tree** is a tree where each node has *no more* than two children.

```c
struct BinaryTreeNode
{
    Object element;
    BinaryTreeNode *leftChild;
    BinaryTreeNode *rightChild;
}
```

- If a node is missing one or both children, then that child pointer is **NULL**
Example: Expression Trees

- Store expressions in a binary tree
 - Leaves of tree are operands (e.g., constants, variables)
 - Other internal nodes are unary or binary operators
- Used by compilers to parse and evaluate expressions
 - Arithmetic, logic, etc.
- E.g., \((a + b \times c) + ((d \times e + f) \times g)\)
Example: Expression Trees

- Evaluate expression
 - Recursively evaluate left and right subtrees
 - Apply operator at root node to results from subtrees

- Traversals (recursive definitions)
 - **Post-order**: left, right, root
 - **Pre-order**: root, left, right
 - **In-order**: left, root, right
Traversals for tree rooted under an arbitrary “node”

- **Pre-order:** node - left - right
- **Post-order:** left - right - node
- **In-order:** left - node - right
Traversals

- **Pre-order:** \(+ + a * b c * + * d e f g\)
- **Post-order:** \(a b c * + d e * f + g * +\)
- **In-order:** \(a + b * c + d * e + f * g\)
Example: Expression Trees

- Constructing an expression tree from postfix notation
 - Use a stack of pointers to trees
 - Read postfix expression left to right
 - If operand, then push on stack
 - If operator, then:
 - Create a BinaryTreeNode with operator as the element
 - Pop top two items off stack
 - Insert these items as left and right child of new node
 - Push pointer to node on the stack
Example: Expression Trees

- E.g., $a \ b + \ c \ d \ e + \ * \ *$

1. (1)
 - Stack: $a \ b$
 - Top: $a \ b$

2. (2)
 - Stack: $+ \ a \ b$
 - Top: $+$

3. (3)
 - Stack: $+ \ (c \ d \ e)$
 - Top: $+$

4. (4)
 - Stack: $+ \ (c \ d \ e)$
 - Top: $+$

Cpt S 223. School of EECS, WSU
Example: Expression Trees

- E.g., \(a \ b + c \ d \ e + ** \)

(5) \(\text{top} \)

(6) \(\text{top} \)
Binary Search Trees

- “Binary search tree (BST)”
 - For any node n, items in left subtree of n
 \leq item in node n
 \leq items in right subtree of n

Which one is a BST and which one is not?

Cpt S 223. School of EECS, WSU
Searching in BSTs

```
Contains (T, x)
{
    if (T == NULL) then return NULL
    if (T->element == x) then return T
    if (x < T->element) then
        return Contains (T->leftChild, x)
    else return Contains (T->rightChild, x)
}
```

Typically assume no duplicate elements.
If duplicates, then store counts in nodes, or each node has a list of objects.

Cpt S 223. School of EECS, WSU

Searching in BSTs

- Time to search using a BST with N nodes is $O(\cdot)$
 - For a BST of height h, it is $O(h)$
 - And, $h = O(N)$ worst-case
 - If the tree is balanced, then $h = O(\lg N)$
Searching in BSTs

- Finding the minimum element
 - Smallest element in left subtree

```c
findMin (T)
{
    if (T == NULL) then return NULL
    if (T->leftChild == NULL) then return T
    else return findMin (T->leftChild)
}
```

- Complexity ? $O(h)$
Searching in BSTs

- Finding the maximum element
 - Largest element in right subtree

```c
findMax (T)
{
    if (T == NULL)then return NULL
    if (T->rightChild == NULL)then return T
    else return findMax (T->rightChild)
}
```

- Complexity \(O(h) \)
Printing BSTs

- In-order traversal ==> sorted

```c
PrintTree (T)
{
    if (T == NULL)
        then return
    PrintTree (T->leftChild)
    cout << T->element
    PrintTree (T->rightChild)
}
```

- Complexity? \(\Theta(n) \)
Inserting into BSTs

- E.g., insert 5

Old tree:

```
    6
   / 
  2   8
 /     \
1   4
   / \
  3   
```

New tree:

```
    6
   / 
  2   8
 /     \
1   4
   / \
  3   5
```

```
\[
\text{insert}(5)
\]
```
Inserting into BSTs

- “Search” for element until reach end of tree; insert new element there

```c
Insert (x, T)
{
    if (T == NULL)
        then T = new Node(x)
    else
        if (x < T->element)
            then if (T->leftChild == NULL)
                then T->leftChild = new Node(x)
            else Insert (x, T->leftChild)
        else if (T->rightChild == NULL)
            then (T->rightChild = new Node(x)
        else Insert (x, T->rightChild)
}
```
Removing from BSTs

There are two cases for removal

- **Case 1:** Node to remove has 0 or 1 child
 - **Action:** Just remove it and make appropriate adjustments to retain BST structure
 - E.g., remove(4):

```
Node has no children
```

```
Node has 1 child
```
Removing from BSTs

- **Case 2: Node to remove has 2 children**
 - **Action:**
 - Replace node element with successor
 - Remove the successor (case 1)
 - E.g., remove(2):

Old tree:

New tree:

Can the predecessor be used instead?

Becomes case 1 here
Removing from BSTs

Remove (x, T)
{
 if (T == NULL)
 then return
 if (x == T->element)
 then if ((T->left == NULL) && (T->right != NULL))
 then T = T->right
 else if ((T->right == NULL) && (T->left != NULL))
 then T = T->left
 else if ((T->right == NULL) && (T->left == NULL))
 then T = NULL
 else {
 successor = findMin (T->right)
 T->element = successor->element
 Remove (T->element, T->right)
 }
 else if (x < T->element)
 then Remove (x, T->left) // recursively search
 else Remove (x, T->right) // recursively search
}
Implementation of BST

```cpp
template <typename Comparable>
class BinarySearchTree
{

    public:
        BinarySearchTree( );
        BinarySearchTree( const BinarySearchTree & rhs );
        ~BinarySearchTree( );

        const Comparable & findMin( ) const;
        const Comparable & findMax( ) const;
        bool contains( const Comparable & x ) const;
        bool isEmpty( ) const;
        void printTree( ) const;

        void makeEmpty( );
        void insert( const Comparable & x );
        void remove( const Comparable & x );

        const BinarySearchTree & operator=( const BinarySearchTree & rhs );

```
What's the difference between a struct and a class?

```cpp
private:
 struct BinaryNode {
     Comparable element;
     BinaryNode *left;
     BinaryNode *right;

     BinaryNode( const Comparable &theElement, BinaryNode *lt, BinaryNode *rt )
     : element( theElement ), left( lt ), right( rt ) {} }

 BinaryNode *root;

 void insert( const Comparable &x, BinaryNode * & t ) const;
 void remove( const Comparable &x, BinaryNode * & t ) const;
 BinaryNode * findMin( BinaryNode * t ) const;
 BinaryNode * findMax( BinaryNode * t ) const;
 bool contains( const Comparable &x, BinaryNode * t ) const;
 void makeEmpty( BinaryNode * & t );
 void printTree( BinaryNode * t ) const;
 BinaryNode * clone( BinaryNode * t ) const;
};
```
public

/**
 * Returns true if x is found in the tree.
 */
bool contains(const Comparable & x) const
{
 return contains(x, root);
}

/**
 * Insert x into the tree; duplicates are ignored.
 */
void insert(const Comparable & x)
{
 insert(x, root);
}

/**
 * Remove x from the tree. Nothing is done if x is not found.
 */
void remove(const Comparable & x)
{
 remove(x, root);
}
/**
 * Internal method to test if an item is in a subtree.
 * x is item to search for.
 * t is the node that roots the subtree.
 */

bool contains(const Comparable & x, BinaryNode * t) const
{
 if(t == NULL)
 return false;
 else if(x < t->element)
 return contains(x, t->left);
 else if(t->element < x)
 return contains(x, t->right);
 else
 return true; // Match
}
/**
 * Internal method to find the smallest item in a subtree t.
 * Return node containing the smallest item.
 */

BinaryNode * findMin(BinaryNode *t) const
{
 if(t == NULL)
 return NULL;
 if(t->left == NULL)
 return t;
 return findMin(t->left);
}

/**
 * Internal method to find the largest item in a subtree t.
 * Return node containing the largest item.
 */

BinaryNode * findMax(BinaryNode *t) const
{
 if(t != NULL)
 while(t->right != NULL)
 t = t->right;
 return t;
}
/**
 * Internal method to insert into a subtree.
 * x is the item to insert.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */

void insert(const Comparable & x, BinaryNode * & t)
{
 if(t == NULL)
 t = new BinaryNode(x, NULL, NULL);
 else if(x < t->element)
 insert(x, t->left);
 else if(t->element < x)
 insert(x, t->right);
 else
 ; // Duplicate; do nothing
}
/**
 * Internal method to remove from a subtree.
 * x is the item to remove.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */

void remove(const Comparable & x, BinaryNode * & t)
{
 if(t == NULL)
 return; // Item not found; do nothing
 if(x < t->element)
 remove(x, t->left);
 else if(t->element < x)
 remove(x, t->right);
 else if(t->left != NULL && t->right != NULL) // Two children
 {
 t->element = findMin(t->right)->element;
 remove(t->element, t->right);
 }
 else
 {
 BinaryNode *oldNode = t;
 t = (t->left != NULL) ? t->left : t->right;
 delete oldNode;
 }
}
/**
 * Destructor for the tree
 */
~BinarySearchTree()
{
 makeEmpty();
}
/**
 * Internal method to make subtree empty.
 */
void makeEmpty(BinaryNode * & t)
{
 if(t != NULL)
 {
 makeEmpty(t->left);
 makeEmpty(t->right);
 delete t;
 }
 t = NULL;
}
BST Analysis

- `printTree`, `makeEmpty` and `operator=`
 - Always $\Theta(N)$
- `insert`, `remove`, `contains`, `findMin`, `findMax`
 - $O(h)$, where $h = \text{height of tree}$
- Worst case: $h = ?$ $\Theta(N)$
- Best case: $h = ?$ $\Theta(\lg N)$
- Average case: $h = ?$ $\Theta(\lg N)$
BST Average-Case Analysis

- Define "Internal path length” of a tree:
 - = Sum of the depths of all nodes in the tree
 - Implies: average depth of a tree = Internal path length/N

- But there are lots of trees possible (one for every unique insertion sequence)
 - ==> Compute average internal path length over all possible insertion sequences
 - Assume all insertion sequences are equally likely
 - Result: $O(N \log_2 N)$
 - Thus, average depth = $O(N \log N) / N = O(\log N)$
Calculating Avg. Internal Path Length

- Let $D(N)$ = int. path. len. for a tree with N nodes

 \[
 D(N) = D(\text{left}) + D(\text{right}) + D(\text{root}) = D(i) + i + D(N-i-1) + N-i-1 + 0 = D(i) + D(N-i-1) + N-1
 \]

- If all tree sizes are equally likely,

 \[
 \Rightarrow \text{avg. } D(i) = \text{avg. } D(N-i-1) = \frac{1}{N} \sum_{j=0}^{N-1} D(j)
 \]

 \[
 \Rightarrow \text{Avg. } D(N) = \frac{2}{N} \sum_{j=0}^{N-1} D(j) + N-1
 \]

 \[
 \Rightarrow O(N \lg N)
 \]

A similar analysis will be used in QuickSort
Randomly Generated
500-node BST (insert only)

Average node depth = 9.98
log₂ 500 = 8.97
Previous BST after 500^2 Random Mixture of Insert/Remove Operations

Average node depth = 12.51
$\log_2 500 = 8.97$

Starting to become unbalanced…
need balancing!

Cpt S 223. School of EECS, WSU
Balanced Binary Search Trees
BST Average-Case Analysis

- After randomly inserting N nodes into an empty BST
 - Average depth = $O(\log_2 N)$

- After $\Theta(N^2)$ random insert/remove pairs into an N-node BST
 - Average depth = $\Theta(N^{1/2})$

- Why?

- Solutions?
 - Overcome problematic average cases?
 - Overcome worst worst case?
Balanced BSTs

- **AVL trees**
 - Height of left and right subtrees at every node in BST differ by at most 1
 - Balance forcefully maintained for every update (via rotations)
 - BST depth always $O(\log_2 N)$
AVL Trees

- AVL (Adelson-Velskii and Landis, 1962)

- **Definition:**

 Every AVL tree is a BST such that:

 1. For *every* node in the BST, the heights of its left and right subtrees differ by at most 1
AVL Trees

- Worst-case Height of AVL tree is $\Theta(\log_2 N)$
 - Actually, $1.44 \log_2(N+2) - 1.328$

- Intuitively, enforces that a tree is “sufficiently” populated before height is grown
 - Minimum #nodes $S(h)$ in an AVL tree of height h:
 - $S(h) = S(h-1) + S(h-2) + 1$
 - (Similar to Fibonacci recurrence)
 - $= \Theta(2^h)$
AVL Trees

Which of these is a valid AVL tree?

This is an AVL tree

This is NOT an AVL tree

Note: height violation not allowed at ANY node

Cpt S 223. School of EECS, WSU
Maintaining Balance Condition

- If we can maintain balance condition, then the insert, remove, find operations are $O(\lg N)$
 - How?
 - $N = \Omega(2^h) \implies h = O(\lg(N))$
- Maintain height $h(t)$ at each node t
 - $h(t) = \max \{h(t->left), h(t->right)\} + 1$
 - $h(\text{empty tree}) = -1$
- Which operations can upset balance condition?
AVL Insert

- Insert can violate AVL balance condition
- Can be fixed by a rotation

Insert(6):

Inserting 6 violates AVL balance condition

Rotating 7-8 restores balance

Balanced
AVL Insert

- Only nodes along path to insertion could have their balance altered
- Follow the path back to root, looking for violations
- Fix the deepest node with violation using single or double rotations

Q) Why is fixing the deepest node with violation sufficient?
AVL Insert – how to fix a node with height violation?

- Assume the violation after insert is at node k
- Four cases leading to violation:
 - **CASE 1**: Insert into the left subtree of the left child of k
 - **CASE 2**: Insert into the right subtree of the left child of k
 - **CASE 3**: Insert into the left subtree of the right child of k
 - **CASE 4**: Insert into the right subtree of the right child of k
- Cases 1 and 4 handled by “single rotation”
- Cases 2 and 3 handled by “double rotation”
Identifying Cases for AVL Insert

Let this be the deepest node with the violation (i.e., imbalance) (i.e., nearest to the last insertion site)

CASE 1
CASE 2
CASE 3
CASE 4
Case 1 for AVL insert

Let this be the node with the violation (i.e., imbalance) (nearest to the last insertion site)
Remember: X, Y, Z could be empty trees, or single node trees, or multiple node trees.

AVL Insert (single rotation)

- **Case 1:** Single rotation right

Before:

- Imbalance
- AVL balance condition okay?
- BST order okay?

Inserted:

After:

- Balanced
- AVL balance condition okay?
- BST order okay?

Invariant: $X < k_1 < Y < k_2 < Z$
AVL Insert (single rotation)

- Case 1 example
General approach for fixing violations after AVL tree insertions

1. Locate the deepest node with the height imbalance
2. Locate which part of its subtree caused the imbalance
 - This will be same as locating the subtree site of insertion
3. Identify the case (1 or 2 or 3 or 4)
4. Do the corresponding rotation.
CASE 4 for AVL insert

Let this be the node with the violation (i.e., imbalance) (nearest to the last insertion site)
AVL Insert (single rotation)

Case 4: Single rotation left

Before:

After:

AVL balance condition okay? BST order okay?

Invariant: \(X < k_1 < Y < k_2 < Z \)
AVL Insert (single rotation)

- Case 4 example

![AVL Tree Diagram]

- Automatically fixed
- will this be true always?
- balanced

Cpt S 223. School of EECS, WSU
Case 2 for AVL insert

Let this be the node with the violation (i.e., imbalance) (nearest to the last insertion site)
Note: X, Z can be empty trees, or single node trees, or multiple node trees. But Y should have at least one or more nodes in it because of insertion.

AVL Insert

- **Case 2:** Single rotation fails

 ![Diagram showing AVL Insert Case 2](image)

 Before: Imbalance

 ![Tree diagram before insertion](image)

 After: Imbalance remains!

 ![Tree diagram after insertion](image)

 Think of Y as = ![Tree diagram representing Y](image)

 Single rotation does not fix the imbalance!
AVL Insert

- **Case 2:** Left-right double rotation

Before:
- Imbalance

After:
- Balanced!

AVL balance condition okay?
BST order okay?

Inserted

Invariant: $A < k_1 < B < k_2 < C < k_3 < D$

=> Make k_2 take k_3’s place

Can be implemented as two successive single rotations
AVL Insert (double rotation)

- **Case 2 example**

 - **Approach:** push 3 to 5’s place
Case 3 for AVL insert

Let this be the node with the violation (i.e., imbalance) (nearest to the last insertion site)

CASE 3

Insert
Case 3 == mirror case of Case 2

AVL Insert

Case 3: Right-left double rotation

Invariant: $A < k_1 < B < k_2 < C < k_3 < D$
Exercise for AVL deletion/remove

Delete(2): ?

Fix (by case 4)

Q) How much time will it take to identify the case?
Alternative for AVL Remove
(Lazy deletion)

- Assume remove accomplished using lazy deletion
 - Removed nodes only marked as deleted, but not actually removed from BST until some cutoff is reached
 - Unmarked when same object re-inserted
 - Re-allocation time avoided
 - Does not affect $O(\log_2 N)$ height as long as deleted nodes are not in the majority
 - Does require additional memory per node
 - Can accomplish remove without lazy deletion
AVL Tree Implementation

```c
1 struct AvlNode
2 {
3     Comparable element;
4     AvlNode *left;
5     AvlNode *right;
6     int height;
7
8     AvlNode( const Comparable & theElement, AvlNode *lt,
9             AvlNode *rt, int h = 0 )
10     : element( theElement ), left( lt ), right( rt ), height( h )
11     };
```
AVL Tree Implementation

1 /*
2 * Return the height of node t or -1 if NULL.
3 */
4 int height(AvlNode *t) const
5 {
6 return t == NULL ? -1 : t->height;
7 }

Cpt S 223. School of EECS, WSU
Q) Is it guaranteed that the deepest node with imbalance is the one that gets fixed?
A) Yes, recursion will ensure that.

```c
/**
 * Internal method to insert into a subtree.
 * x is the item to insert.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */
void insert( const Comparable & x, AvlNode * & t )
{
    if( t == NULL )
        t = new AvlNode( x, NULL, NULL );
    else if( x < t->element )
    {
        insert( x, t->left );
        if( height( t->left ) - height( t->right ) == 2 )
            if( x < t->left->element )
                rotateWithLeftChild( t );
            else
                doubleWithLeftChild( t );
    }
    else if( t->element < x )
    {
        insert( x, t->right );
        if( height( t->right ) - height( t->left ) == 2 )
            if( t->right->element < x )
                rotateWithRightChild( t );
            else
                doubleWithRightChild( t );
    }
    else
        ; // Duplicate; do nothing
    t->height = max( height( t->left ), height( t->right ) ) + 1;
}
```
1 /**
2 * Rotate binary tree node with left child.
3 * For AVL trees, this is a single rotation for case 1.
4 * Update heights, then set new root.
5 */
6 void rotateWithLeftChild(AvlNode * & k2)
7 {
8 AvlNode *k1 = k2->left;
9 k2->left = k1->right;
10 k1->right = k2;
11 k2->height = max(height(k2->left), height(k2->right)) + 1;
12 k1->height = max(height(k1->left), k2->height) + 1;
13 k2 = k1;
14 }

Similarly, write rotateWithRightChild() for case 4
1 /**
2 * Double rotate binary tree node: first left child
3 * with its right child; then node k3 with new left child.
4 * For AVL trees, this is a double rotation for case 2.
5 * Update heights, then set new root.
6 */
7 void doubleWithLeftChild(AvlNode * & k3)
8 {
9 rotateWithRightChild(k3->left); // #1
10 rotateWithLeftChild(k3); // #2
11 }

Cpt S 223. School of EECS, WSU
Splay Tree

Observation:
- Height imbalance is a problem only if & when the nodes in the deeper parts of the tree are accessed

Idea:
- Use a **lazy** strategy to fix height imbalance

Strategy:
- After a node is accessed, push it to the root via AVL rotations
- Guarantees that any M consecutive operations on an empty tree will take at most $O(M \log_2 N)$ time
- Amortized cost per operation is $O(\log_2 N)$
- Still, some operations may take $O(N)$ time
- Does not require maintaining height or balance information
Splay Tree

Solution 1

- Perform single rotations with accessed/new node and parent until accessed/new node is the root

Problem

- Pushes current root node deep into tree
- In general, can result in $O(M \times N)$ time for M operations
- E.g., insert 1, 2, 3, ..., N
Splay Tree

- Solution 2
 - Still rotate tree on the path from the new/accessed node X to the root
 - But, rotations are more selective based on node, parent and grandparent
 - If X is child of root, then rotate X with root
 - Otherwise, ...
Splaying: Zig-zag

- Node X is right-child of parent, which is left-child of grandparent (or vice-versa)
- Perform double rotation (left, right)

```
        G
       / \
     P    D
    / \   \
   X   A   B
  / \     \
 C   B     C
```

```
        G
       / \
     P    D
    /     \
   X     A
  /     / \
 A     B   C
```

Splaying: Zig-zig

- Node X is left-child of parent, which is left-child of grandparent (or right-right)
- Perform double rotation (right-right)
Splay Tree

- E.g., consider previous worst-case scenario: insert 1, 2, ..., N

Cpt S 223. School of EECS, WSU
Splay Tree: Remove

- Access node to be removed (now at root)
- Remove node leaving two subtrees T_L and T_R
- Access largest element in T_L
 - Now at root; no right child
- Make T_R right child of root of T_L
Balanced BSTs

- AVL trees
 - Guarantees $O(\log_2 N)$ behavior
 - Requires maintaining height information

- Splay trees
 - Guarantees amortized $O(\log_2 N)$ behavior
 - Moves frequently-accessed elements closer to root of tree

- Other self-balancing BSTs:
 - Red-black tree (used in STL)
 - Scapegoat tree
 - Treap

- All these trees assume N-node tree can fit in main memory
 - If not?
Balanced Binary Search Trees
in STL: set and map

- vector and list STL classes inefficient for search

- STL set and map classes guarantee logarithmic insert, delete and search
STL set Class

- STL set class is an ordered container that does not allow duplicates
- Like lists and vectors, sets provide iterators and related methods: begin, end, empty and size
- Sets also support insert, erase and find
Set Insertion

- **insert** adds an item to the set and returns an iterator to it.
 - Because a *set* does not allow duplicates, **insert** may fail.
 - In this case, **insert** returns an iterator to the item causing the failure.
 - (If you want duplicates, use **multiset**)
 - To distinguish between success and failure, **insert** actually returns a pair of results.
 - This **pair** structure consists of an iterator and a Boolean indicating success.

```cpp
pair<iterator,bool> insert (const Object & x);
```
Sidebar: STL pair Class

- `pair<Type1, Type2>`
- Methods: `first, second, first_type, second_type`

```cpp
#include <utility>

pair<iterator, bool> insert (const Object & x) {
    iterator itr;
    bool found;
    ...
    return pair<itr, found>;
}
```
Example code for set insert

```cpp
set<int> s;
//insert
for (int i = 0; i < 1000; i++){
    s.insert(i);
}

//print
iterator<set<int>> it=s.begin();
for(it=s.begin(); it!=s.end();it++) {
    cout << *it << " " << endl;
}
```

What order will the elements get printed?

Sorted order (iterator does an in-order traversal)
Example code for set insert

Write another code to test the return condition of each insert:

```cpp
set<int> s;
pair<iterator<set<int>>,bool> ret;
for (int i = 0; i < 1000000; i++){
    ret = s.insert(i);
    ... ?
}
```
Set Insertion

- Giving `insert` a hint

  ```cpp
pair<iterator, bool> insert (iterator hint, const Object & x);
  ```

- For good hints, `insert` is O(1)

- Otherwise, reverts to one-parameter `insert`

- E.g.,

  ```cpp
  set<int> s;
  for (int i = 0; i < 1000000; i++)
    s.insert (s.end(), i);
  ```
Set Deletion

- `int erase (const Object & x);`
 - Remove x, if found
 - Return number of items deleted (0 or 1)
- `iterator erase (iterator itr);`
 - Remove object at position given by iterator
 - Return iterator for object after deleted object
- `iterator erase (iterator start, iterator end);`
 - Remove objects from start up to (but not including) end
 - Returns iterator for object after last deleted object
 - Again, iterator advances from start to end using in-order traversal
Set Search

- `iterator find (const Object & x) const;`
 - Returns iterator to object (or `end()` if not found)
 - Unlike `contains`, which returns Boolean
- `find` runs in logarithmic time
STL map Class

- Associative container
 - Each item is 2-tuple: [Key, Value]
- STL map class stores items *sorted by Key*
- set vs. map:
 - The set class \(\equiv \) map where key is the whole record
- Keys must be unique (no duplicates)
 - If you want duplicates, use mulitmap
- Different keys can map to the same value
- Key type and Value type can be totally different
STL set and map classes

Each node in a SET is:

- **key** (as well as the **value**)

Each node in a MAP is:

- Key
- **Value** (can be a struct by itself)
STL map Class

- Methods
 - `begin`, `end`, `size`, `empty`
 - `insert`, `erase`, `find`
- Iterators reference items of type `pair<KeyType,ValueType>`
- Inserted elements are also of type `pair<KeyType,ValueType>`
STL map Class

- Main benefit: overloaded `operator[]`

```cpp
ValueType & operator[](const KeyType & key);
```

- If key is present in map
 - Returns reference to corresponding value
- If key is not present in map
 - Key is inserted into map with a default value
 - Reference to default value is returned

```cpp
map<string, double> salaries;
salaries["Pat"] = 75000.0;
```
Example

```cpp
struct ltstr {
    bool operator()(const char* s1, const char* s2) const {
        return strcmp(s1, s2) < 0;
    }
};

int main() {
    map<const char*, int, ltstr> months;
    months["january"] = 31;
    months["february"] = 28;
    months["march"] = 31;
    months["april"] = 30;
    ...}
```

- Comparator if Key type not primitive
- You really don’t have to call `insert()` explicitly.
- This syntax will do it for you.
- If element already exists, then value will be updated.

Key type

Value type

diff key

diff value
Example (cont.)

...
months["may"] = 31;
months["june"] = 30;
...
months["december"] = 31;

cout << "february -> " << months["february"] << endl;
map<const char*, int, ltstr>::iterator cur = months.find("june");
map<const char*, int, ltstr>::iterator prev = cur;
map<const char*, int, ltstr>::iterator next = cur;
++next; --prev;
cout << "Previous (in alphabetical order) is " << (*prev).first << endl;
cout << "Next (in alphabetical order) is " << (*next).first << endl;

months["february"] = 29;
cout << "february -> " << months["february"] << endl;

What will this code do?
Implementation of **set** and **map**

- Support insertion, deletion and search in worst-case logarithmic time
- Use balanced binary search tree (a red-black tree)
- Support for iterator
 - Tree node points to its predecessor and successor
 - Which traversal order?
When to use \textit{set} and when to use \textit{map}?

\begin{itemize}
 \item \textbf{set}
 \begin{itemize}
 \item Whenever your entire record structure to be used as the Key
 \item E.g., to maintain a searchable set of numbers
 \end{itemize}
 \item \textbf{map}
 \begin{itemize}
 \item Whenever your record structure has fields other than Key
 \item E.g., employee record (search Key: ID, Value: all other info such as name, salary, etc.)
 \end{itemize}
\end{itemize}
B-Trees

A Tree Data Structure for Disks
Top 10 Largest Databases

<table>
<thead>
<tr>
<th>Organization</th>
<th>Database Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDCC</td>
<td>6,000 TBs</td>
</tr>
<tr>
<td>NERSC</td>
<td>2,800 TBs</td>
</tr>
<tr>
<td>AT&T</td>
<td>323 TBs</td>
</tr>
<tr>
<td>Google</td>
<td>33 trillion rows (91 million insertions per day)</td>
</tr>
<tr>
<td>Sprint</td>
<td>3 trillion rows (100 million insertions per day)</td>
</tr>
<tr>
<td>ChoicePoint</td>
<td>250 TBs</td>
</tr>
<tr>
<td>Yahoo!</td>
<td>100 TBs</td>
</tr>
<tr>
<td>YouTube</td>
<td>45 TBs</td>
</tr>
<tr>
<td>Amazon</td>
<td>42 TBs</td>
</tr>
<tr>
<td>Library of Congress</td>
<td>20 TBs</td>
</tr>
</tbody>
</table>

How to count the bytes?

- Kilo \(\approx x 10^3 \)
- Mega \(\approx x 10^6 \)
- Giga \(\approx x 10^9 \)
- Tera \(\approx x 10^{12} \)
- Peta \(\approx x 10^{15} \)
- Exa \(\approx x 10^{18} \)
- Zeta \(\approx x 10^{21} \)

Current limit for single node storage

Needs more sophisticated disk/IO machine

Cpt S 223. School of EECS, WSU
Primary storage vs. Disks

<table>
<thead>
<tr>
<th></th>
<th>Primary Storage</th>
<th>Secondary Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>RAM (main memory), cache</td>
<td>Disk (i.e., I/O)</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>>100 MB to 2-4GB</td>
<td>Giga (10^9) to Terabytes (10^{12}) to..</td>
</tr>
<tr>
<td>Data persistence</td>
<td>Transient (erased after process terminates)</td>
<td>Persistent (permanently stored)</td>
</tr>
<tr>
<td>Data access speeds</td>
<td>~ a few clock cycles (i.e., $x \times 10^{-9}$ seconds)</td>
<td>milliseconds (10^{-3} sec) = Data seek time + read time</td>
</tr>
</tbody>
</table>
Use a balanced BST?

- **Google**: 33 trillion items
- Indexed by?
 - IP, HTML page content

- Estimated access time (if we use a simple balanced BST):
 - \(h = \Omega(\log_2 33 \times 10^{12}) \approx 44.9 \) disk accesses
 - Assume 120 disk accesses per second
 - \(\Rightarrow \) Each search takes 0.37 seconds

- 1 disk access \(\Rightarrow \) \(10^6 \) CPU instructions

What happens if you do a million searches?
Main idea: **Height reduction**

- **Why?**
 - BST, AVL trees at best have heights $O(\lg n)$
 - $N=10^6 \Rightarrow \lg 10^6$ is roughly 20
 - 20 disk seeks for each level would be too much!
- So reduce the height!
- **How?**
 - Increase the log base beyond 2
 - Eg., $\log_5 10^6$ is < 9
 - Instead of binary (2-ary) trees, use m-ary search trees s.t. $m>2$
How to store an m-way tree?

- **Example**: 3-way search tree
- Each node stores:
 - ≤ 2 keys
 - ≤ 3 children

- Height of a balanced 3-way search tree?
3 levels in a 3-way tree can accommodate up to 26 elements

3-way tree

3 levels in a 4-way tree can accommodate up to 63 elements

4-way tree
Bigger Idea

- Use an M-way search tree
- Each node access brings in M-1 keys and M child pointers
- Choose M so node size = 1 disk block size
- Height of tree = $\Theta(\log_M N)$

Tree node structure:

Should fit in one disk block

```
key_1  key_2  ....  key_{M-1}
```

```
child_0  child_1  child_2  child_{M-3}  child_{M-1}
```
Using B-trees

- Each node fits in 1 disk block
- Main memory
- M-way B-tree
- Tree itself need NOT fit in RAM
- Actual data stored in the disk (at leaf levels of the B-tree) and only keys are stored in the main tree
Factors

How big are the keys?

Capacity of a single disk block

Design parameters ($m=?$)

Tree height

#disk reads

dominates

Overall search time

Should fit in one disk block
Example

- Standard disk block size = 8192 bytes
- Assume keys use 32 bytes, pointers use 4 bytes
 - Keys uniquely identify data elements
- Space per node = 32*(M-1) + 4*M = 8192
 - M = 228
 - \(\log_{228} 33 \times 10^{12} = 5.7 \) (disk accesses)
 - Each search takes 0.047 seconds
5-way tree of 31 nodes has only 3 levels

Index to the Data

Real Data Items stored at leaves as disk blocks
B+ trees: Definition

A *B+ tree* of order *M* is an *M-way tree* with all the following properties:

1. Leaves store the real data items
2. Internal nodes store up to *M-1* keys
 s.t., key *i* is the smallest key in subtree *i+1*
3. Root can have between 2 to *M* children
4. Each internal node (except root) has between ceiling(*M/2*) to *M* children
5. All leaves are at the same depth
6. Each leaf has between ceiling(*L/2*) and *L* data items, for some *L*

Parameters: *N, M, L*
B+ tree of order 5

- M=5 (order of the B+ tree)
- L=5 (#data items bound for leaves)

- Each int. node (except root) has to have at least 3 children
- Each leaf has to have at least 3 data items
B+ tree of order 5

- Index to the Data (store only keys)
- Each internal node = 1 disk block

- Data items stored at leaves
- Each leaf = 1 disk block
Example: Find (81)?

- $O(\log_M \#\text{leaves})$ disk block reads
- Within the leaf: $O(L)$
 - or even better, $O(\log L)$ if data items are kept sorted
How to design a B+ tree?

- How to find the #children per node?
 i.e., $M=?$
- How to find the #data items per leaf?
 i.e., $L=?$
Node Data Structures

- Root & internal nodes
 - M child pointers
 - 4 x M bytes
 - M-1 key entries
 - (M-1) x K bytes

- Leaf node
 - Let L be the max number of data items per leaf
 - Storage needed per leaf:
 - L x D bytes

• D denotes the size of each data item
• K denotes the size of a key (ie., K <= D)
How to choose M and L?

- M & L are chosen based on:
 1. Disk block size (B)
 2. Data element size (D)
 3. Key size (K)
Calculating M: threshold for internal node capacity

- Each internal node needs
 - $4 \times M + (M-1) \times K$ bytes

- Each internal node has to fit inside a disk block
 - $\Rightarrow B = 4M + (M-1)K$

- Solving the above:
 - $M = \text{floor}\left[\frac{B+K}{4+K} \right]$

- **Example**: For $K=4$, $B=8$ KB:
 - $M = 1,024$
Calculating L: threshold for leaf capacity

- $L = \text{floor}\left(\frac{B}{D}\right)$

Example: For $D=4$, $B = 8$ KB:
- $L = 2,048$
- ie., each leaf has to store 1,024 to 2,048 data items
How to use a B+ tree?

- Find
- Insert
- Delete
Example: Find (81) ?

- $O(\log_M \# \text{leaves})$ disk block reads
- Within each internal node:
 - $O(\lg M)$ assuming binary search
- Within the leaf:
 - $O(\lg L)$ assuming binary search & data kept sorted
B+ trees: Other Counters

- Let N be the total number of data items
- How many leaves in the tree?
 - $= \text{between ceil} \left[\frac{N}{L} \right] \text{and ceil} \left[\frac{2N}{L} \right]$

- What is the tree height?
 - $= O(\log_M \#\text{leaves})$
B+ tree: Insertion

- Ends up maintaining all leaves at the same level before and after insertion

- This could mean increasing the height of the tree
Example: Insert (57) before

Insert here, there is space!
Example: Insert (57) after

No more room

Next: Insert(55)

Empty now
So, split the previous leaf into 2 parts
Example.. Insert (55) after

There is one empty room here

Split parent node

Next: Insert (40)

Hmm.. Leaf already full, and no empty neighbors!

No space here too

Cpt S 223. School of EECS, WSU
Example.. Insert (40) after

Note: Splitting the root itself would mean we are increasing the height by 1
Example.. Delete (99) before

Too few (<3 data items) after delete (L/2=3)

Will be left with too few children (<3) after move (M/2=3)

Borrow leaf from left neighbor
Example... Delete (99) after
Summary: Trees

- Trees are ubiquitous in software
- Search trees important for fast search
 - Support logarithmic searches
 - Must be kept balanced (AVL, Splay, B-tree)
- STL `set` and `map` classes use balanced trees to support logarithmic insert, delete and search
 - Implementation uses top-down red-black trees (not AVL) – Chapter 12 in the book
- Search tree for Disks
 - B+ tree