On the Quality of Service of Failure Detectors

Present by : Lihua Ran

(Some of the slides are made by the authors of the paper:
Sam Toueg, Wei Chen, M.K. Aguilera)

April 18, 2002
Presentation Outline

• Introduction of QoS
• On the QoS Specification of Failure Detectors
• The Design and Analysis of a New Failure Detector Algorithm
• Configuring the Failure Detector to Satisfy QoS Requirements
• Conclusion Remarks
What is the QoS of Failure Detectors

• QoS is a specification that quantifies
 a) speed: how fast the failure detector detects actual failures.
 b) accuracy: how well it avoids false detections.
Why do we need to study the QoS of Failure Detectors

• Roughly speaking, a failure detector provides some information on which processes have crashed.

• The information, typically given in the form of a list of suspects, is not always up-to-date or correct.
 – A failure detector may take a long time to start suspecting a process that has crashed;
 – It may erroneously suspect a process that has not crashed (in practice this can be due to message losses and delays).
Why do we need to study the QoS of Failure Detectors (cont.)

• For asynchronous systems, failure detectors specified in terms of their eventual behavior (e.g., a process that crashed is eventually suspected.) are appropriate.

• But applications that have timing constraints require failure detectors that provide a quality of service (QoS) with some quantitative timeliness guarantees.
Presentation Outline

• Introduction of QoS
• On the QoS Specification of Failure Detectors
• The Design and Analysis of a New Failure Detector Algorithm
• Configuring the Failure Detector to Satisfy QoS Requirements
• Conclusion Remarks
The Failure Detector Model

- We consider a system of two processes p and q, the failure detector at q monitors p, and q does not crash. Failure detector at P is unreliable, it can erroneously suspect a process that has not crashed.
- The output of the failure detector at q at time t is either S or T, which means that q suspects or trusts p at time t.
- Transition:
 - S-transition: the output at q changes from T to S.
 - T-transition: the output at q changes from S to T.
Primary Metrics

- Detection time T_D
- Mistake recurrence time T_{MR}
- Mistake duration T_M
Derived Metrics

• Average mistake rate (λ_M): this measures the rate at which a failure detector make mistakes.

• Query accuracy probability (P_A): the probability that the failure detector’s output is correct at a random time.

• Good period duration (T_G): the length of a good period (the time that elapses from a T-transition to the next S-transition).

• Forward good period duration (T_{FG}): a random variable representing the time that elapses from a random time at which q trusts p, to the time of the next S-transition.
Relations Among Accuracy Metrics

\[T_G + T_M = T_{MR} \]
\[\lambda_M = \frac{1}{E(T_{MR})} \]
\[P_A = \frac{E(T_G)}{E(T_{MR})} \]
\[\Pr(T_{FG} \leq x) = \frac{1}{E(T_G)} \int_0^x \Pr(T_G > y) \, dy \]
\[E(T^k_{FG}) = \frac{E(T^{k+1}_G)}{(k+1)E(T^{k+1}_G)} \]
\[E(T^2_{FG}) = \frac{E(T^2_G)}{2E(T^2_G)} = \frac{E(T_G)}{2} \left(1 + \frac{V(T_G)}{E(T_G)^2} \right) \]
Presentation Outline

• Introduction of QoS
• On the QoS Specification of Failure Detectors
• The Design and Analysis of a New Failure Detector Algorithm
• Configuring the Failure Detector to Satisfy QoS Requirements
The Probabilistic Network Model

• Process p and q are connected by a link that does not create or duplicate messages, but may delay or drop messages.
• Message loss probability P_L
• Message delay time D
• Process p and q have access to synchronized clocks.
A Simple FD Algorithm

- Timing out depends on two consecutive messages
Large Detection Time

- Depends on the delay of the last message sent by p

\[T_D \leq \max(D) + TO \]
New Algorithm (w/ synchronized clocks)

- At any time $t \in [\tau_i, \tau_{i+1})$, FD trusts p iff q has received heartbeat message m_i or higher.
Detection Time

Process p

Process q

FD at q

\[T_D \leq \delta + \eta \]
An Optimality Result

Among all FD algorithms such that

- the monitored process p sends a message every η,
- the detection time is always less than a given bound,

our new algorithm provides the best query accuracy probability.
Presentation Outline

• Introduction of QoS
• On the QoS Specification of Failure Detectors
• The Design and Analysis of a New Failure Detector Algorithm
• Configuring the Failure Detector to Satisfy QoS Requirements
• Conclusion Remarks
Satisfying QoS Requirements

• Given a set of QoS requirements as a tuple \((T_D^U, T_{MR}^L, T_M^U)\) such that

\[
T_D \leq T_D^U
\]

\[
E(T_{MR}) \geq T_{MR}^L
\]

\[
E(T_M) \leq T_M^U
\]

• Find \(\eta\) and \(\delta\) to achieve these requirements
The probabilistic behavior of heartbeats is given
The probabilistic behavior of heartbeats is unknown.
Main Idea

• Bound $\Pr(D \leq x)$ using $E(D)$ and $V(D)$

• Modify configuration procedure to use $E(D)$ and $V(D)$ instead of $\Pr(D \leq x)$

• Estimate $E(D)$, $V(D)$ and p_L using heartbeats

• Use estimates to run configuration procedure
An adaptive Failure Detector

- In some networks, the probabilistic behavior of heartbeat message changes along the time.
- The procedure used for unknown message behavior can be used to make failure detector adaptive.
- Main idea: to periodically estimate the current values of $E(D)$, $V(D)$ and p_L using the n most recent heartbeats.
Presentation Outline

• Introduction of QoS
• On the QoS Specification of Failure Detectors
• The Design and Analysis of a New Failure Detector Algorithm
• Configuring the Failure Detector to Satisfy QoS Requirements
• Conclusion Remarks
Concluding Remarks

• This work is the first comprehensive and systematic study of the QoS of failure detectors using probability theory.

• The new algorithm presented provides the best query accuracy probability.

• It shows how to compute the failure detector parameters to satisfy the given QoS requirements with or without knowing the probabilistic behavior of heartbeat messages.

• Adaptive failure detector forms the core of a failure detection service that is currently being implemented and evaluated.