- 1.
- p = 41, q = 59
- 2.
- n = pq = 2419
- 3.
- (n) = (p-1)(q-1) = 40*58 = 2320

Find e such that gcd(e, 2320) = 1 and e is small and odd

e = 3 works - 4.
- d =
*e*^{-1}mod (n)

= 3^{-1}mod 2320

d = 1547

d*e mod (n) = 1547*3 mod 2320 = 1 - 5.
- P = (e, n) = (3, 2419)
- 6.
- S = (d, n) = (1547, 2419)

P(M) =*M*^{3}(mod 2419)

S(M) =*M*^{1547}(mod 2419)

Note: Only 2419 different messages are possible.