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Abstract

     The goal of the research being reported is the discovery of useful concepts in temporal
medical databases. Building on previous experiments, we introduce TEMPADIS, the Temporal
Pattern Discovery System, which uses our Event Set Sequence approach to discover patterns
in this type of data. Results are presented for a database of Human Immunodeficiency Virus
(HIV) patients. We discuss the overall process of knowledge discovery including data cleaning
and preprocessing, data reduction and projection, and matching goals to a particular data-
mining method.

Introduction
     With the recent explosion of research in the area of knowledge discovery in databases
(KDD), advances in, as well as problems with, KDD and data mining are being researched and
documented. Fayyad, Piatetsky-Shapiro, and Smyth [1] give a good overview of the KDD
process, the role of data mining, and associated application issues. According to them, “KDD
refers to the overall process of discovering useful knowledge from data, and data mining refers
to a particular step in this process. Data mining is the application of specific algorithms for
extracting patterns from data.” [2] They enumerate nine steps in the KDD process:

1. Understanding application domain/identifying goal of KDD process
2. Creating a target data set
3. Data cleaning and preprocessing
4. Data reduction and projection
5. Matching goals to a particular data mining method
6. Exploratory analysis/model and hypothesis selection
7. Data mining
8. Interpreting mined patterns
9. Acting on the discovered knowledge
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Figure 1.  Overview of development of TEMPADIS.

We use the development of our Temporal Pattern Discovery System (TEMPADIS) to help
understand the overall process of knowledge discovery in a medical database environment.  Figure
1 diagrams the steps in the knowledge discovery process using TEMPADIS.  We started with the
hypothesis that, given a database of clinical data for patients who had the same catastrophic or
chronic illness, we could discover that subsets of those patients had a similar experience during the
course of that disease.  Once we found a database suitable to test this hypothesis, we embarked
on the process of knowledge discovery.

Identifying the Goal
     We started with the hypothesis stated above. Given a database that contains clinical data for
patients diagnosed with the same catastrophic or chronic illness, we are interested in discovering
patterns in that data that show that groups of patients had similar experiences during the course of
the disease. The motivations for such research are many. With advances in medical technology
have come many methods for treating such illnesses. Analysis of the course of such diseases is
beneficial from multiple points of view, including enhancement of provision of care, prognosis,
monitoring, outcomes research, cost/benefit analysis, and quality assurance. This type of research
is also beneficial for development of techniques of pattern discovery for other data collections that
have similar characteristics.

Understanding the Domain
     One of the important issues in the KDD process is availability of sufficient data to discover
complex patterns in data, particularly when there are a large number of data fields. Our domain is
HIV disease. Our data collection is the Jonathan Jockush HIV Clinical Research Database which
was established in 1987 at the University of Texas Southwestern Medical Center at Dallas. The
database contains data for over 8,500 patients of the Acquired Immune Deficiency Syndrome
(AIDS) Clinic at Parkland Memorial Hospital, also in Dallas. The database consists of data
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collected from the hospital charge system, the pharmacy system, and the laboratory information
system. In addition, some data is entered directly from patients’ day sheets and charts. Choosing
what specific data to consider is a complex task.

The data available for our analysis is a combination of binary, numeric, symbolic and text
data fields. Beyond the variety of data, there are several other aspects of the data to consider.
First, especially where laboratory, diagnosis, and therapy data are concerned, most of the data is
temporal, i.e., there are multiple instances of the same data field with different dates and values for
each instance.
     Second, the importance of the temporal aspect depends on the specific type of data. For some
of the data (e.g., clinic or emergency room visits, or lab test results) the occurrence of the event
and the order of occurrence relative to other events is important. For other data (e.g., diagnoses or
drug therapies), the duration of an event is just as important as the relative order of occurrence.
     Third, the set of data fields that exist for each patient not only varies greatly between collection
dates for any given patient, but also varies between patients even for similar medical events. We
are studying methods of discovering useful patterns in this temporal, non-standard form, variable
data-field, medical data.

Creating a Target Data Set
The objective of this phase is to select a data set or focus on a subset of variables or

data samples. The objective for us was to have enough data to discover significant patterns, but
to focus on as small a set of variables as would produce useful results. We decided to select a
subset of the patients, and then select a subset of the available variables.
     We examined the database to see how long patients had been monitored, and how many
times they had been seen. Of the over 8,500 patients in the database, there are many who had
been monitored for only a short period of time. Several hundred have only been seen for a
month or less. On the other hand there are several hundred that have been monitored for seven
years or more. We needed to find a group of patients on whom data had been collected for a
significant length of time and often enough to have a significant detectable pattern.
Approximately 1,100 of the patients have been monitored by the Parkland system for at least 4
years, with a minimum of 30 distinct dates when at least one type of event (i.e., charge, pharmacy,
lab test result, etc.) was recorded. We have randomly selected groups of patients from these 1,100
patients for the results given in this paper.  The number of patients used for any given task is
discussed as that task is discussed.
     Next, we looked at the available variables. Given the mass of data that is available, it is
important to focus on finding some minimum number of variables that still is sufficient to
represent the concepts that are to be discovered. To help us focus, we used an initial goal of
identifying a dozen key variables, although we finally used twenty. This subset of the available
data includes all encounters with patients, a subset of the laboratory results, and a subset of the
pharmacy data. Later, in step four of the KDD process, data reduction and projection, we add
the final two variables that are measures of the patient’s overall health status.
     An encounter with a patient is represented by two variables. The first variable is the type of
encounter. The three types are clinic visits, emergency room (ER) visits, and hospital stays. The
second variable is the level of severity of the encounter. For example, it is not uncommon for
patients to go to the ER, when they could have gone to the clinic had it been open. This type of
visit would not be considered as severe as an ER trauma visit (e.g., gunshot wound).
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Conversely, patients will sometimes go to the clinic when they really need to be hospitalized.
Further, when hospitalized, the severity is different if the patient requires intensive care rather
than placement on one of the regular wards. Therefore, each type of encounter has graded
levels of severity.
     There are literally thousands of different medical laboratory tests. While examining this data
we noted that there were some tests that were ordered significantly more times than others. We
also noted that the database contains duplicate data for several different time periods, i.e., that
particular data was in fact loaded into the database twice during those time periods.
     We then examined the pharmacy data. In order to see what types of drugs were being used
on these patients, we randomly selected 100 patients, and found that 71 different drugs had
been given to them that were specific to HIV and/or HIV-related illnesses. We also discovered
that there were many errors in how the various prescriptions were recorded in the pharmacy’s
computer system. In an extreme example, one drug was coded 46 different ways throughout the
database.

Data Cleaning and Preprocessing
     The purpose of this step is to remove noise from the data or develop a method for
accounting for noise in the data, look at strategies for handling missing data, and handle any
other known changes that need to be made. The business of cleaning up the data is a long and
tedious task. In our case, some identified problems could be cleaned up as a group by
processing the database with SQL statements. One example would be to correct the same
misspelling and/or miscoding of a drug in the pharmacy data that appeared multiple times.
Other problems required a manual search of the data to remove duplicate records. In one
example, a charge for a single service was entered five times, and then corresponding records
were entered to reverse the charge four times, with a net result of nine records for a single
charge event.
     Since the problems that could be cleaned up with SQL statements were easy, they were
corrected for the entire database. However, handling the manual problems in the entire
database would have been too time-consuming. Therefore, we randomly selected a subset of
400 patients from our 1,100 described above in order to have a significant base of patients to
work from without losing sight of the original goal of our project. It still took approximately 3
man-months to clean up those 400 patients’ data. It is important to note that we successfully
corrected the obvious errors. However, errors due to missing or incorrectly recorded data were
not fixed.

Data Reduction and Projection
The purpose of this step is find useful features to represent the data depending on the

goal.  This can involve using dimensionality reduction or transformation methods to reduce the
effective number of variables under consideration or finding invariant representations of the
data.  Our goal was to use only a minimum number of key variables that well represented the
data.  First, we reexamined the lab test results. We focused on variables that were most likely to
be recorded on any given encounter and were important indicators of the health status of an
HIV-infected patient. The six variables chosen are White Blood Cell (WBC), Hematocrit (HCT),
Platelets (PLT), CD4 Absolute (CD4A), CD4 Percent (CD4P), and Lymphocytes (LMPH).
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Knowing that the “normal” value of these lab results would vary from patient to patient,
we developed a methodology for normalizing all the values for each patient so that comparisons
could be made with other patient’s data [3]. Each variable was treated separately for each
patient. All were normalized to a range of integers from –4 to +4. In this range, 0 is normal, and
both -4 and +4 are indicative of severe illness and are roughly equivalent to the number of standard
deviations away from normal for that person. The methodology is based on statistical norms for the
general population with adjustments made for the fact that immune-compromised patients tend to
have lower than normal values. However, the methodology takes into account the fact that the
normal value for any given patient may or may not be different, compared to the general
population.

Choosing a subset of the pharmacy data proved to be a more challenging task. Since we
are trying to find patterns that represent similar experiences during the course of disease, the
most obvious solution was to group the drugs into categories according to the reason they were
being prescribed. This yielded the following ten categories: Nucleoside Analogs, Protease
Inhibitors, Prophylaxis Therapies, Intraveneous antibiotics, Anti-virals, Anti-pneumocystis
pneumonia/anti-toxoplasmosis, Anti-mycobacterials, Anti-wasting syndrome, Anti-fungals and
Chemotherapies.  We decided that simply tracking whether or not a patient is on a drug in a
particular category on a given day is sufficient information for tracking the patient’s overall
course of disease.

At this point we have 18 variables as shown in Table 1.  In our terminology, an “event” is
the occurrence of one of these variables together with its value on a given day.

Table 1.  The 18 Data Elements Extracted Directly From the Clean Data Set.

  Patient Encounter Drug Categories
    1. Event Type   9. Nucleoside Analogs
    2. Event Severity  10. Protease Inhibitors

 11. Prophylaxis Therapies
  Blood Tests  12. Intraveneous antibiotics
    3. White Blood Cell (WBC)  13. Anti-virals
    4. Hematocrit (HCT)  14. Anti-pneumocystis pneumonia/
    5. Platelets (PLT) anti-toxoplasmosis
    6. CD4 Absolute (CD4A)  15. Anti-mycobacterials
    7. CD4 Percent (CD4P)  16. Anti-wasting syndrome
    8. Lymphocytes (LMPH)  17. Anti-fungals

 18. Chemotherapies

The next data we considered is also the group of data in the database collected in the
least automated way, the diagnosis data. This data was being manually entered directly from the
patient day sheets each time the patient visited the clinic. However, the resources allocated to this
task were not sufficient, and this data is rather incomplete. As a result, we chose not to use the
available diagnosis data for our discovery purposes. We instead looked for another way to obtain
equivalent information.
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     After discussions with the clinicians in the HIV Clinical Research Group, we decided to use the
pharmacy data to learn about the current state of a patient’s health.  Further, we decided that the
level of detail needed for health status was not fine-grained, and that the five health status
categories, shown in Table 2, would be appropriate.

Table 2.  Health Status Categories.

  1. Asymptomatic, not on any therapy
  2. Asymptomatic, only on anti-HIV therapy
  3. Immune system significantly damaged, on prophylactic therapy
  4. Active opportunistic infection/illness
  5. Severe/Life-threatening illness

We used a machine learning technique called decision tree induction to develop rules for
determining the health status value for any given patient on any given day. It is important to note
that even though we used a machine learning technique to do this data reduction, this is not the
data-mining step.  In order to have a single variable that represents the general health status,
we used decision tree induction to learn how to determine this value from a larger set of data.

Decision tree induction is commonly used for classification problems of this type.
Decision trees are built using varying rules about the information gained by splitting the
remaining unclassified examples on each of the remaining unused attributes.  In order to induce
the tree for determining the correct health status value, we developed a set of test data by
randomly selecting four days from each of 100 patients and listing all drugs being taken on
those days. Three clinicians then rated the health status for each day, according to the
categories listed in Table 2, based solely on the drug information.  If there was a discrepancy
among the clinicians’ ratings we went back to them and got a consensus.
     We then used C4.5 [4] to induce the decision tree.  The inputs were the standard files required
by C4.5.  The names file contained the classes (which were the health status categories listed in
Table 2), the attributes (the various drugs), and the attribute values (1 if currently on the drug and 0
otherwise).  The data file contained the 400 samples with the attribute values and the class.  We
ran C4.5 in iterative mode using the default parameters, except that we specified a 95% confidence
level on the pruned tree.  The resulting tree was converted to rules that were used to determine
health status values.  Then a health status (HS) field was inserted in each day of each patient’s
data as part of the data reduction preprocessing.
     Now that we had a measure of health status, which gave us an idea of the current state of the
patient, we needed a measure that gave us a feel for how long the patient might remain in that
state. The health status only tells what is currently wrong with the patient, but it gives no indication
of how severe the current problem is. For example, health status could be 1, 2 or 3 and the patient
could have the flu. A severity measure would provide a way to differentiate between that patient
and another that has the same health status but no current illness. Further, a patient could have
health status 5 and be near death or could be well on the way to recovery. Again, a severity
measure would provide a means to differentiate these two states. The combined information
provided by the health status measure and a severity measure can provide a significant increase in
the meaning not only of the current state of a patient, but also of a discovered pattern. The severity
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of the current event can be measured by determining how long it would take to recover from that
event. However, this is not the type of information that appears in the database. Once again, we
turned to a machine learning technique to inject information not already explicitly present to
enhance the discovery process.
     We chose a neural network to learn the recovery time function.  Neural nets have been used in
a variety of ways in medical domains [5-8], including prediction of length of hospital stay, so it was
reasonable to assume we could use it to predict length of recovery time. The next task was to
select the relevant inputs for determining some measure of recovery time. The selected inputs are
shown in Table 3.  As we discussed this with the HIV Clinical Research Group staff, needing to
know diagnoses was again raised as being important to this determination. Of course, we already
knew that data was not available; however, we did have our newly determined health status, which
was developed to be a measure of the nature of the current illness. This lead to the decision to
include the health status measure to represent diagnoses as one of the inputs for our neural net.

Table 3.  Recovery Time Neural Net Inputs.

    1. Days Since Previous Event
    2. Days Until Next Event
    3-5. Health Status (Previous, Current and Next Values)
    6-8. Event Type (Previous, Current and Next Values)
    9-11. Event Severity (Previous, Current and Next Values)
    12-29. Normalized Blood Test Values (Previous, Current and Next Values for each of
WBC, etc.)

     For additional inputs to the neural net, we include the current event type, since the output is a
measure of how long it takes to recover from the current event. The current laboratory test results
are also included. Further, in order to put the current event in context, we choose to include the
same data related to the previous event and the next event, as well as the time since the previous
event and the time until the next event.
     For training cases, we randomly selected six days from each of 50 patients. We then
abstracted the data needed for the neural net inputs. We again had three clinicians rate the
recovery time of the patients based solely on the information we would be providing to the
neural net. We originally asked them to predict in number of days. When we saw a significant
disparity in the predictions, we decided that we needed to decrease the granularity of the
measure. Therefore, we use a scale of 0 to 5, where 0 to 4 represented estimated weeks to
recovery, and 5 represented anything over 4 weeks. Again, where we found discrepancies, we
went back to the clinicians for a consensus.
     We use the NevProp3 neural net software [9] and its default 2/3-1/3 holdout, five sample
cross validation. NevProp3 only allows for a single hidden layer. Within that context we
experimented with various network structures. As shown in Table 4, the network with six hidden
nodes performs the best, with an 85.3% correct prediction rate. The MeanSqErr is the mean of the
squared differences between the predictions the model made and the target values designated
by the clinicians, where 0 is best. R2 is commonly interpreted as the fraction of variance explained
by the model, where 0 means that the model predicts the mean of the target values and 1
means that the model predicts the correct target value. NevProp3 allows a model to be saved
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and then used to generate values on new data inputs.  The six hidden node model was saved and
used to generate a recovery time (WTR) field for each day of each patient’s data as part of the data
reduction preprocessing.  This new knowledge, coupled with the health status, gives more overall
meaning to the data in the absence of an explicit diagnosis.

Table 4.  Results of Neural Net Training.

Hidden MeanSqErr R2 Predicted
Nodes      (Best=0)      (Best=1) (Best=1)

4 0.216 0.886 0.713
5 0.181 0.905 0.813
6 0.140 0.926 0.853
7 0.174 0.909 0.810

The result of the data reduction and projection step is the reduced data set.  This data set
consists of 20 variables, the 18 listed in Table 1 plus HS and WTR, deemed to well represent the
larger set of all data available.

Matching Goals to A Particular Data Mining Method
     The purpose of this step is to select a method or methods to be used for searching for
patterns in the data.  This involves deciding which models may be appropriate and deciding
which data mining method or methods match the goals of the KDD process.  Model selection is
usually based on what type of data is being mined, and mining method selection is based on
what the end results needs to be, usually discovery or prediction.

< { (EV C ) (HS 3) (WTR 0) (WBC 0) (PLT -1) (HCT 0) (LMPH -3)
    (onD 0000000000) }
  { (EV E ) (HS 3) (WTR 2) (WBC 3) (PLT -1) (HCT 1) (LMPH 4)
    (onD 0000000000) }
  { (EV C ) (HS 3) (WTR 0) (WBC 1) (PLT 0) (HCT 0) (CD4P -3)
    (CD4A -1) (LMPH 0) (onD 1010000000) }
  { (EV C ) (HS 3) (WTR 1) (WBC -1) (PLT -1) (HCT 1) (LMPH 2)
    (onD 1010000000) }
  { (EV E ) (HS 3) (WTR 1) (WBC 2) (PLT -1) (HCT 1) (LMPH 4)
    (onD 0000000000) }
  { (EV C ) (HS 3) (WTR 1) (WBC 1) (PLT 0) (HCT 0) (CD4P -3)
    (CD4A -2) (LMPH 0) (onD 1010000000) } >

Figure 2.  Typical pattern discovered by TEMPADIS.

     We are trying to discover patterns in sequences of events across patients in a database. An
example of the type of patterns that we have discovered with TEMPADIS is shown in Figure 2.
This pattern contains six event-sets; each enclosed in curly braces. The first event-set is based
on a clinic visit (EV C), the patients’ health status is 3 on the scale of 1 to 5 described above
(HS 3), and the recovery time measure is 0 on the scale of 0 to 5 described above (WTR 0).
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Further, only four of the six lab tests were run on this visit. These are (WBC 0), (PLT –1), (HCT
0) and (LMPH –3). The only one that would be of significant concern is the lymphocytes being
considerably low at –3. The other two lab tests, CD4P and CD4A, can be seen in the third and
sixth event-sets. Finally, the ten drug categories are represented by the binary values 0 or 1. In
the first event-set, (onD 0000000000), means that none of the drug categories was currently
being taken by the patients. However, in the third event-set, drugs from category 1, Nucleoside
Analogs, and category 3, Prophylactic Therapies, are indicated as currently being taken.
     In our review of the literature, we found that there were only a few data mining methods
relevant for our goal [10-14]. We chose Srikant and Agrawal’s General Sequential Patterns
(GSP) Algorithm [10,14] as the basis for the data mining method we would use.
     The GSP Algorithm uses atomic events as the basis for building up sequences. In our
domain an example of an atomic event, as seen in the example pattern above, would be (WBC
0), which is the occurrence of a White Blood Cell test result that is in the normal range for that
patient. The database is searched for all atomic events that occur in the database, and then
each atomic event is checked for support by the database. In our domain, support is the
percentage of the patients in the database that had that event occur at least once. Only those
events that meet the support threshold are “supported” by the database. We have used various
support threshold levels from 6.6% (i.e., 1 of every 16 patients should support the pattern) to
50%. Those atomic events that survived are then combined as pairs, both as sequences and as
concurrent occurrences. For example, if we had the atomic events (WBC 1) and (HCT 0) which
were supported by the database, then the resulting combinations would be <{(WBC 1)(HCT
0)}>, which is a concurrent occurrence, and <{(WBC 1)} {(HCT 0}> and <{(HCT 0)} {(WBC 1)}>,
which are sequences. All three are considered to be sequences of length two because they
contain two atomic events. These sequences of length two are checked for support by the
database. Only those with enough support contribute to what are called candidate sequences
for the next iteration. Once the supported sequences are at least length two, the next generation
of candidate sequences is created by joining together sequences which are supported at the
previous length. For example, given supported sequences of length two:

<{(WBC 1)(HCT 0)}>
<{(HCT 0)} {(PLT -2)}>
<{(PLT -2)(CD4A -1)}>

Then we could generate two candidate sequences of length three:
<{(WBC 1)(HCT 0)} {(PLT -2)}>
<{(HCT 0)} {(PLT -2)(CD4A -1)}>

If both of those sequences were supported by the database, then we could generate the length
four candidate sequence:

<{(WBC 1)(HCT 0)} {(PLT -2)(CD4A -1)}>
Note that the joined sequences must be exactly the same except for the first event of one and
the last event of the other.
     This continues until there are no candidate sequences that have support at the current level.
We would say that the discovered pattern shown at the beginning of this section was of length
104, since it includes 104 atomic events, if you consider each drug type a separate event. This
pattern would have been discovered on the 104th iteration of the algorithm.
     The GSP Algorithm also provides the windowing concept. The minimum and maximum gap
(i.e., the allowable time between events for them to be considered to have happened
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consecutively) can be specified. In our domain, the minimum time between consecutive events
would be 0 days, since we are interested in events that may happen on consecutive days (e.g.,
hospitalizations). Currently, we are using 90 to 120 days as the maximum gap. This range
allows for a patient, who is going through a period of relatively good health, to only see the
doctor every 2 to 4 months for follow-up visits. Otherwise, his or her sequence of event-sets
would be partitioned (i.e., split into two parts at the point at which time between visits is greater
than the maximum gap). This maximum gap, of course, allows for more frequent visits by those
who are not so healthy. Further, the time window within which events can happen and still be
considered to part of the same event-set can also be specified. In our domain, a window of 7 to
10 days is necessary to allow patients to come to have lab work done a week in advance of
their next clinic appointment.

Exploratory Analysis/Model and Hypothesis Selection
     The purpose of this step is to evaluate the model and data mining method selections.  This
can result in modifications and refinements to the original selections.  Further, upon seeing the
exploratory results, hypotheses can be made about what are the realistic results of the particular
KDD process.
     We ran our exploratory analysis on a modified version of the original GSP Algorithm model.
Though the basic algorithm is the same, the details of implementation are different. The GSP
algorithm was designed to work on sequences of events that either occurred or did not, where the
occurrence or lack thereof was significant to the patterns discovered. Also, none of the events had
attributes. The differences in domains lead to several significant observations. In our domain, the
occurrence of an event or lack thereof does not necessarily have any specific significance. The
events themselves have attributes, especially when viewed from the event-set perspective. Finally,
the shear numbers of events being dealt with computationally strains an algorithm that was
designed to discover patterns at an individual event level. We concluded that our original
modified-GSP implementation was insufficient [3]. However, those experiments led us to
propose our Event Set Sequence approach and a further modification to the GSP Algorithm. We
call the system that implements this approach TEMPADIS, or the TEMporal PAttern DIscovery
System.

TEMPADIS

Figure 3.  Algorithm for TEMPADIS.

     Our concept of an event-set is based on the idea that the events in the database exist for
one of three reasons: 1) some type of visit to a medical facility was made; 2) laboratory tests were
performed; or 3) prescriptions were dispensed. Generally those events that happen on the same
day or on days very close together are all related. For example, a patient who is having periodic
check-ups may have lab tests done about a week prior to an appointment to ensure the test
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results will be available on the day they actually see the doctor. Further, they may not pick up a
prescription until a day or two after seeing the doctor. Therefore, we have incorporated the time-
windowing technique from the GSP Algorithm, that allows for those events to be considered as
a single event-set. We use a set difference method that allows us to compare event-sets,
looking at all 20 variables as a single unit. The algorithm for TEMPADIS is shown visually in
Figure 3 and listed below:
          1. Read database
          2. Get unique event-sets from database
          3. curSeqs = GenerateNewSeqs from unique event-sets
          4. while curSeqs
          4a.  CalculateSupportInDatabase for curSeqs
          4b.  supportedSeqs = ExtractBestSupportedSeqs from curSeqs
          4c.  curSeqs = GenerateNewSeqs from supportedSeqs
             endwhile
     Whereas GSP retrieved the unique atomic events, in step 2 we create a list of all of the unique
event-sets in the database. In step 3, we put these unique individual event-sets into a sequence
format of length one. Step 4 is to continue the algorithm as long as there are sequences to
consider.
     In step 4a, we determine the support for each sequence under consideration in the database.
This is where our algorithm differs significantly from the original GSP. In GSP, the current
sequence under consideration was supported by a specific instance in the database on an all or
nothing basis, i.e., it supported it or it did not. Our algorithm is necessarily fuzzier than that.
     There are many parameters that can affect what patterns are supported by the database. Above
we mentioned the support threshold as being one. Within the CalculateSupportInDatabase function
of step 4a there are several more. In this function, there is a critical sub-function called
DegreeOfMatch. The method for determining the set difference can be varied and the weights of
the individual elements of the set can be varied. In the current version, we have not yet addressed
the issue of missing data in any in-depth manor. For example, if a lab result is missing, in either the
current sequence under consideration or in the particular database instance we are looking at for
support, or both, then we give that a value of 50% support for that element of the event-set.
However, the issue of missing drug data does not get addressed at all. If the drug is not present in
the database, then there is no support for that element of the event-set, even if upon visual
inspection of a patient’s records we could reasonably assume they were on the drug at the time.
These issues will be addressed in future work.
     For the data that is present, we use a partial match system. For example, for WBC we might
decrease the degree of match by 33% for each point difference on our scale of –4 to +4. In this
example, if the current sequence under consideration has a value of -1, then for the value in the
particular database instance of -1 we would give 100% match. For values of 0 or –2 we would give
67% match, and for values of 1 or –3 we would give 33% match. All other values (i.e., -4, 2, 3 and
4) would be given 0% match.
     The net result is that DegreeOfMatch returns a value ranging from 0.0 to 1.0 for each event-set
in the length of the sequence. TEMPADIS uses a weakest-link/average-link method for determining
whether or not a sequence under consideration is supported by a given patient’s data. For
example, the weakest-link value might be set to 0.72, and the average-link value might be set to
0.80. This means that every event-set in the sequence must have at least 0.72 as its
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DegreeOfMatch, but the entire sequence must average at least 0.80 before it is considered to
support the candidate sequence.
     The last thing to consider in step 4a is the fact that each patient in the database might have
multiple instances of support for a sequence currently under consideration. Because of this, and
the fact that we want the best supported sequences to be found, each instance must have its
support value calculated. Then only the highest value is saved for use in calculating the total
support of the database for that sequence. These highest values are summed for all patients in the
database that met the average-link threshold. If the sum is greater than the number of patients
times the average-link value, then the sequence is considered to be supported by the database.
     From the previous explanation, one might imagine that TEMPADIS is very computationally
intensive, and it is. Therefore, as one of the many search control strategies that we have
implemented, step 4b limits the number of sequences that can be carried over to the next iteration.
We use a pruning method that considers a minimum number of sequences under which no pruning
will be done, a maximum number over which pruning must be done, and a pruning factor, all of
which can be varied.
    Finally, step 4c generates the new set of sequences for consideration on the next iteration. We
incorporate intelligent selection of the event-sets with which to attempt to lengthen the patterns.
The intelligent selection is based on the event-sets that were present in the database immediately
prior to and immediately after the best supported patterns within each individual patient. This list
was saved during step 4a. Each sequence can spawn many new sequences during this step,
including many duplicates. However, we use a hash tree to track the newly generated sequences
and it discards duplicates as they are generated.

Data Mining
     After all of the above steps of the knowledge discovery process are completed, we are finally
ready to begin using TEMPADIS in the data-mining step. The data has been cleaned,
preprocessed and reduced. We have incorporated knowledge learned from the database back into
the database to give us more intelligent data from which to discover. We have developed a
technique which reduces the computational complexity, and now we put our Event Set Sequence
approach to the test.
     We have stated that we use multiple methods of search control to reduce the computational
complexity. When we begin the data mining, we implement search control strategies that will only
look at patterns that are of interest.  We initialize our search strategy during step 2, Get unique
event-sets from database. If we are particularly interested in patterns with hospitalizations, then we
would only retrieve all unique event-sets that have a hospital stay as the visit type. If we are
particular interested in patterns that have a specific trend in a specific variable then we screen for
that trend during step 4c, GenerateNewSeqs.

Interpreting Mined Patterns
     The purpose of this step is to look at what was found and make some sense of it.  It may
result in returning to a previous step and revising or fine tuning it.  Once the algorithm has
completed on a given set of parameters, the clinicians can examine the patterns for significance
and meaning. The director of the HIV Clinical Research Group examined the example pattern,
shown in Figure 2. Her conclusion was:



13

Figure 4.  Pattern Trends in Health Status and Recovery Time.

“These [look] like fairly advanced patients in the era of poor or no anti-retroviral
suppression of their viral loads. Therefore, they would be subject to any number
of viral infections such as CMV "flares" which would likely make their lymphocyte
counts go up. The cause of CMV flares is unknown but may be from any number
of causes such as mild "colds", etc.”

She observes that the patients have “poor or no anti-retroviral suppression of their viral loads”.
This conclusion can be drawn from that fact that it was not until 1996 when Protease Inhibitors
came into use for suppressing replication of the HIV, and it was only at that point when viral
replication was successful repressed in large numbers of HIV patients. The pattern clearly
shows no use of Protease Inhibitors (drug category 2) and also shows sporadic use of the other
drug therapies. Her comments further reflect the relative flatness of all the variables (see Fig. 4
and Fig. 5) except the white blood cells and the lymphocytes, which jump around significantly.
Once a pattern is deemed to be significant or interesting, we can look at the specific patients
that supported the pattern and do the various types of analysis mentioned above on this sub-
population.

Discussion
     Once we have run through the KDD process, we can evaluate the results. Fayyad, Piatetsky-
Shapiro, and Smyth [15] give us some criteria for evaluating discovered patterns. They tell us
patterns should be understandable and novel, but that these concepts are subjective.  They
further state that the patterns should be “potentially useful”, leading to some benefit to the user.
They also note that a the concept of interestingness [16] is an overall measure of the pattern
value, combining factors such as validity, novelty, usefulness and simplicity, but can be explicitly
defined, or manifested implicitly by the system itself.
     It is clear from the presentation that the pattern in Fig. 2 was found to be understandable.  In
fact, it seemed to represent a specifically recognizable condition.  TEMPADIS is biased towards
discovery of interesting patterns through the use of search control parameters that allow the
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user to specify what kinds of patterns would be interesting.  As for the usefulness, that is the
next step.  Now that groups of patients can been identified by a pattern, that group can be
investigated for the purposes that the user originally had for specifying parameters that would
yield patterns of that type.

Figure 5.  Pattern Trends in Blood Tests.

Other measures that we considered for evaluation purposes include significance in
terms of number of patients represented, and length of time covered by the patterns.  With the
parameters used for the pattern in Fig. 2, the pattern would have only had to represent one out
of every sixteen patients in order to be discovered by TEMPADIS. However, this pattern actually
represents one out of every 9.6 patients. Again with the parameters used for that particular run,
this pattern likely spans a period of from 1 to 12 months. Examination of the 10 specific patients
supporting the pattern shows that it actually varies from 5 to 10 months. Given that the majority
of our patient data spans 48 to 60 months, patterns of this length are non-trivial.
     Our experience with TEMPADIS reaffirms that this type of problem easily becomes
intractable. It is clear that this approach cannot be used to randomly sift through the database to
discover whatever patterns might be out there. However, as stated earlier we are not interested
in all the patterns that could be found. With careful use of search control, TEMPADIS can be
used to discover meaningful patterns in areas of specific research interest.
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